LANGKAH-LANGKAH INSTALASI OPERATING SISTEM WINDOWS XP
Komputer yang telahkitarakitbelumlahbisadigunakanuntukaktifitasbekerjalayaknyakomputer yang kitatemui di kantor-kantorataurumah, Untukitulahdibutuhkan Operating System atauSistemOperasi yang menghubungkanmanusiadengan peripheral komputertersebut, komputertanpa operating sistemtidakbisadigunakan, ibaratandapunyahapetetapitidakadasistemoperasi, perludigarisbawahiataudicetaktebalkan, sistemoperasibukanlahmerupakansuatu software, jadisistemoperasi =/= software. Laluapabedanya ?sebuah software membutuhkansistemoperasi, sistemoperasiini yang menjembataniantara software dengan hardware. Nah sistemoperasi di sini yang familiar adalah Microsoft Windows.Windows bukanlahsalahsatusistemoperasi, adabanyaksistemoperasi lain seperti Linux, Sun Microsystem.Mac OS, Symbhian.Sistemoperasidiibaratkansebagai body sebuahmobil, sedangmesinnyaadalah hardware-hardware, nah kalokitaikutmenumpangkitalahsoftwarenya.
1. Siapkan CD Master Microsoft Windows XP.
Dalampembelian CD Windows XP adaduapilihan, versi tray danversi box, untukversi tray hanyaberbentuk cd danbuku manual saja, sedangkanuntukversi box adaboxnya.
Masuklahke menu BIOS untukmencarifasilitas boot pertama kali lewat CD/DV ROM. Tergantung BIOS yang ada, bisamenekantombolDEL /ESC/F1 berulang-ulangsaatpertama kali komputer di hidupkan.
Sebagaicontohiniadalah Award BIOS, padagambar yang dilingkariubahlahmenjadi CD/DVD, jikasudahsimpanperubahantersebutdenganmenekan F10, setelahitusimpan setting tersebutdankeluar.
Proses booting akanmendeteksi CD/DVD dahulu, jikabenarmakaakanmuncul proses instalasi Microsoft Windows ( selanjutnyadisebutsajadengan Windows ). Tekansembarangtomboluntukmemasuki proses instalasi Windows.
1. CD Windows XP akandibaca, danakankeluarketerangan yang membingungkan di bawahnya, ituadalahindikasibawah Windows sedangmeload file-file tertentuuntuk proses instalasi.
2. Jika Windows sudahselesaimembaca file-file tersebutmakaakanmuncultampilan “Welcome Setup“ berikut
Ada 3 pilihan.
a. To set up Windows XP now, press ENTER
Maksudnyakitakitamemulaimelakukaninstalasi Windows, makacukupmenekantombol ENTER
b. To repair a Windows X installation using Recovery Console, press R
Maksudnyabahwauntuk recovery Windows jikaterjadimasalahsistemtetapiinijikakitasudahmenginstall Windows terlebihdahulu
c. To quit Setup without installaion Windows XP, press F3
Tujuannyaadalahmembatalkan proses instalasi Windows.
3. Jikakitamenekan ENTER makakitaakanmenujulangkahselanjutnyayaitupersyaratanuntuktundukpada Licensing Agreement, danandaharusmenjawabnyadenganmenekan F8, jikatidakdijawabatau di tolakmakaandatidakakandapatmeneruskan proses instalasi, jikaandasetujuterhadappersyaratantersebut ( siapapernahbacaperaturan ? ) makaakanmasuktahapberikutnya.
4. Jikaandasetujusekarangsaatnyamasukke proses pemilihanpartisihardisk, seandainyahardisktersebutmasukbarumakaakanadatampilansepertiini
Maksudnya proses instalasimembacaadanyasatuhardisk yang besarnya 19093 M atau 20 GB, jikaanda dah yakinsesuaikeberadaanhardisktersebuttekan enter saja, untukmelakukan proses formatinghardisk, format hardiskadalahmembentukblokdan cluster di dalamkepinganhardisk.
5. Proses formatinghardisk
Andabisamemilihtipepartisi, bisa FAT atau NTFS.Jikapilihansudahbenarpilihsalahsatudantekan enter, makainstalasiakanmeneruskanketahapselanjutnya.
Inicontoh proses formatingsedangberlangsung. 6. Proses selanjutnyaakansecaraotomatismeload file-file windows untukdicopykedalamhardisk.
Jikaselesaitercopysaatnya booting ulang, alias restart dengansendirinya.Prosesinstalasiselanjutnyaakandimulaidenganmunculnya logo Windows
7. Setelahmelewatitahapinikitadimintauntukmemasukan parameter yang dimintadalam proses instalasi. Regional and Language Options, adalahmemasukanlokasidanbahasa yang digunakan, untukbahasa Indonesia saatinibelumada, kecualidalam Windows XP Starter Edition.
8. Tahapselanjutnyaadalahmemasukannamadanperusahaananda.
9. Memasukan 25 key yang ada di box atau cd
10. Proses selanjutnyamemasukan password sistem, password di sinibukan password saatkitamasukke Windows, tetapi password yang akandigunakanjikakitahendakmereparasi windows ataumasuk safe mode
11. Memasukan setting jamdantanggalserta Time Zone
12. Setting network bisaandaabaikandengantekan typical saja
Sampaitahapinikitaakanmenunggusampai Windows selesaimelakukaninstalasi, jika proses selesai Windows akanmelakukan restart atau booting ulang. Setelah booting ulangmaka Windows akanmelakukan setting lagibagipenggunaatau final setup, setting terakhirdan Windows akanmulaibisadigunakansecara default.
Ucapan Welcome to Microsoft Windows jikaberhasilakanmunculsepertigambar di atas, kitamemasukannamapenggunadenganmenekantombol di sebelahkananbawah.
Langkahselanjutnyabisaandateruskansendiri.
Selesaidengantampilnya desktop Windows XP
Dan selesai
M. HUZNAN BKeCorporationz
Kamis, 01 Maret 2012
Rabu, 02 November 2011
Selasa, 06 September 2011
PENJUMLAHAN & PENGURANGAN BILANGAN BINER
SISTEM BILANGAN BINER
Sistem bilangan biner merupakan sistem bilangan dengan basis 2. Sistem bilangan biner menggunakan dua buah simbol yaitu : 0 dan 1. Contoh bilangan biner adalah 1001 yang dapat diartikan dalam sistem bilangan desimal menjadi sebagai berikut :
Position value dalam sistem bilangan biner merupakan perpangkatan dari nilai 2.
Nilai desimal dari sistem bilangan biner juga dapat dicari menggunakan rumus dibawah ini.
Contoh :
Pertambahan Bilangan BINER
Pertambahan pada sistem bilangan biner dilakukan dengan cara yang sama dengan pertambahan pada sistem bilangan desimal. Dasar dari pertambahan sistem bilangan biner dapat dilihat pada gambar dibawah ini.
Contoh pertambahan bilangan BINER :
Pengurangan Bilangan BINER
Pengurangan pada sistem bilangan BINER dilakukan dengan cara yang sama dengan pengurangan sistem bilangan desimal. Dasar dari pengurangan sistem bilangan BINER dapat dilihat pada gambar dibawah ini.Contoh pengurangan bilangan biner:
Pengurangan bilangan biner juga dapat dilakukan dengan menggunakan Komplemen. Terdapat dua macam komplemen pada sistem bilangan biner yaitu : Komplemen 1 (1s complement) dan Komplemen 2 (2s complement).
Contoh pengurangan bilangan biner menggunakan komplemen 1 :
Komplemen 1 pada sistem bilangan biner dilakukan dengan mengurangkan setiap bit dengan nilai 1, atau dengan cara mengubah setiap bit 0 menjadi 1 dan setiap bit 1 menjadi 0. Dengan komplemen 1, hasil digit paling kiri dipindahkan untuk ditambahkan pada bit paling kanan.
Contoh pengurangan bilangan biner menggunakan komplemen 2 :
Komplemen 2 adalah hasil dari komplemen 1 ditambah 1, misalnya komplemen 2 dari bilangan BINER 10110 adalah 01010 (dari komplemen 1 yaitu 01001 ditambah 1). Dengan menggunakan komplemen 2, hasil digit paling kanan dibuang, tidak digunakan.
Penjumlah biner
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Penjumlah atau Adder adalah komponen elektronika digital yang dipakai untuk menjumlahkan dua buah angka dalam sistem bilangan biner. Dalam komputer dan mikroprosesor, Adder biasanya berada di bagian ALU (Arithmetic Logic Unit). Sistem bilangan yang dipakai dalam proses penjumlahan, selain bilangan biner, juga 2's complement untuk bilangan negatif, bilangan BCD (binary-coded decimal), dan excess-3. Jika sistem bilangan yang dipakai adalah 2's complement, maka proses operasi penjumlahan dan operasi pengurangan akan sangat mudah dilakukan.
Diagram sirkuit Half-Adder
Pembicaraan mengenai Adder biasanya dimulai dari Half-Adder, kemudian Full-Adder, dan yang ketiga adalah Ripple-Carry-Adder. Pada Half-Adder, berdasarkan dua input A dan B, maka output Sum, S dari Adder ini akan dihitung berdasarkan operasi XOR dari A dan B. Selain output S, ada satu output yang lain yang dikenal sebagai C atau Carry, dan C ini dihitung berdasarkan operasi AND dari A dan B. Pada prinsipnya output S menyatakan penjumlahan bilangan pada input A dan B, sedangkan output C menyatakan MSB (most significant bit atau carry bit) dari hasil jumlah itu.
Tabel logika/kebenaran dari Half-Adder akan mengikuti seperti berikut:
Input Output
A B C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0
Diagram blok Full-Adder
Rangkaian Full-Adder, pada prinsipnya bekerja seperti Half-Adder, tetapi mampu menampung bilangan Carry dari hasil penjumlahan sebelumnya. Jadi jumlah inputnya ada 3: A, B dan Ci, sementara bagian output ada 2: S dan Co. Ci ini dipakai untuk menampung bit Carry dari penjumlahan sebelumnya.
Diagram sirkuit Full-Adder
Input Output
A B Ci Co S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
Rangkaian dari n buah Full-Adder bisa dipakai untuk menjumlahkan n bit bilangan biner. Maka dalam hal ini, kita akan memperoleh rangkaian yang disebut Ripple-Carry-Adder.
Sistem bilangan biner merupakan sistem bilangan dengan basis 2. Sistem bilangan biner menggunakan dua buah simbol yaitu : 0 dan 1. Contoh bilangan biner adalah 1001 yang dapat diartikan dalam sistem bilangan desimal menjadi sebagai berikut :
Position value dalam sistem bilangan biner merupakan perpangkatan dari nilai 2.
Nilai desimal dari sistem bilangan biner juga dapat dicari menggunakan rumus dibawah ini.
Contoh :
Pertambahan Bilangan BINER
Pertambahan pada sistem bilangan biner dilakukan dengan cara yang sama dengan pertambahan pada sistem bilangan desimal. Dasar dari pertambahan sistem bilangan biner dapat dilihat pada gambar dibawah ini.
Contoh pertambahan bilangan BINER :
Pengurangan Bilangan BINER
Pengurangan pada sistem bilangan BINER dilakukan dengan cara yang sama dengan pengurangan sistem bilangan desimal. Dasar dari pengurangan sistem bilangan BINER dapat dilihat pada gambar dibawah ini.Contoh pengurangan bilangan biner:
Pengurangan bilangan biner juga dapat dilakukan dengan menggunakan Komplemen. Terdapat dua macam komplemen pada sistem bilangan biner yaitu : Komplemen 1 (1s complement) dan Komplemen 2 (2s complement).
Contoh pengurangan bilangan biner menggunakan komplemen 1 :
Komplemen 1 pada sistem bilangan biner dilakukan dengan mengurangkan setiap bit dengan nilai 1, atau dengan cara mengubah setiap bit 0 menjadi 1 dan setiap bit 1 menjadi 0. Dengan komplemen 1, hasil digit paling kiri dipindahkan untuk ditambahkan pada bit paling kanan.
Contoh pengurangan bilangan biner menggunakan komplemen 2 :
Komplemen 2 adalah hasil dari komplemen 1 ditambah 1, misalnya komplemen 2 dari bilangan BINER 10110 adalah 01010 (dari komplemen 1 yaitu 01001 ditambah 1). Dengan menggunakan komplemen 2, hasil digit paling kanan dibuang, tidak digunakan.
Penjumlah biner
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Penjumlah atau Adder adalah komponen elektronika digital yang dipakai untuk menjumlahkan dua buah angka dalam sistem bilangan biner. Dalam komputer dan mikroprosesor, Adder biasanya berada di bagian ALU (Arithmetic Logic Unit). Sistem bilangan yang dipakai dalam proses penjumlahan, selain bilangan biner, juga 2's complement untuk bilangan negatif, bilangan BCD (binary-coded decimal), dan excess-3. Jika sistem bilangan yang dipakai adalah 2's complement, maka proses operasi penjumlahan dan operasi pengurangan akan sangat mudah dilakukan.
Diagram sirkuit Half-Adder
Pembicaraan mengenai Adder biasanya dimulai dari Half-Adder, kemudian Full-Adder, dan yang ketiga adalah Ripple-Carry-Adder. Pada Half-Adder, berdasarkan dua input A dan B, maka output Sum, S dari Adder ini akan dihitung berdasarkan operasi XOR dari A dan B. Selain output S, ada satu output yang lain yang dikenal sebagai C atau Carry, dan C ini dihitung berdasarkan operasi AND dari A dan B. Pada prinsipnya output S menyatakan penjumlahan bilangan pada input A dan B, sedangkan output C menyatakan MSB (most significant bit atau carry bit) dari hasil jumlah itu.
Tabel logika/kebenaran dari Half-Adder akan mengikuti seperti berikut:
Input Output
A B C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0
Diagram blok Full-Adder
Rangkaian Full-Adder, pada prinsipnya bekerja seperti Half-Adder, tetapi mampu menampung bilangan Carry dari hasil penjumlahan sebelumnya. Jadi jumlah inputnya ada 3: A, B dan Ci, sementara bagian output ada 2: S dan Co. Ci ini dipakai untuk menampung bit Carry dari penjumlahan sebelumnya.
Diagram sirkuit Full-Adder
Input Output
A B Ci Co S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
Rangkaian dari n buah Full-Adder bisa dipakai untuk menjumlahkan n bit bilangan biner. Maka dalam hal ini, kita akan memperoleh rangkaian yang disebut Ripple-Carry-Adder.
Rabu, 27 Juli 2011
Apa fungsi SUBNET pada IP Adressing.?
Apa fungsi SUBNET pada IP Adressing.?
Selayang Pandang Tentang IP Address
IP address adalah alamat yang diberikan pada jaringan komputer dan peralatan jaringan yang menggunakan protokol TCP/IP. IP address terdiri atas 32 bit angka biner yang dapat dituliskan sebagai empat kelompok angka desimal yang dipisahkan oleh tanda titik seperti 193.160.5.1.
IP address terdiri atas dua bagian yaitu network ID dan host ID, dimana network ID menentukan alamat jaringan komputer, sedangkan host ID menentukan alamat host (komputer, router, switch). Oleh sebab itu IP address memberikan alamat lengkap suatu host beserta alamat jaringan di mana host itu berada.
Kelas-kelas IP Address
Untuk mempermudah pemakaian, bergantung pada kebutuhan pemakai, IP address dibagi dalam tiga kelas seperti diperlihatkan pada table dibawah
IP address kelas A diberikan untuk jaringan dengan jumlah host yang sangat besar. Range IP 1.xxx.xxx.xxx. – 126.xxx.xxx.xxx, terdapat 16.777.214 (16 juta) IP address pada tiap kelas A. Pada IP address kelas A, network ID ialah 8 bit pertama, sedangkan host ID ialah 24 bit berikutnya. Dengan demikian, cara membaca IP address kelas A, misalnya 113.46.5.6 ialah:
Network ID = 113
Host ID = 46.5.6
IP address di atas berarti host nomor 46.5.6 pada network nomor 113. IP address kelas B biasanya dialokasikan untuk jaringan berukuran sedang dan besar. Pada IP address kelas B, network ID ialah 16 bit pertama, sedangkan host ID ialah 16 bit berikutnya. Dengan demikian, cara membaca IP adderss kelas B, misalnya 132.92.121.1 :
Network ID = 132.92
Host ID = 121.1
IP address di atas berarti host nomor 121.1 pada network nomor 132.92. Dengan panjang host ID 16 bit, network dengan IP address kelas B dapat menampung sekitar 65000 host. Range IP 128.0.xxx.xxx – 191.155.xxx.xxx.
IP address kelas C awalnya digunakan untuk jaringan berukuran kecil (LAN). Host ID ialah 8 bit terakhir. Dengan konfigurasi ini, bisa dibentuk sekitar 2 juta network dengan masing-masing network memiliki 256 IP address. Range IP 192.0.0.xxx – 223.255.255.x. Pengalokasian IP address pada dasarnya ialah proses memilih network ID dan host ID yang tepat untuk suatu jaringan. Tepat atau tidaknya konfigurasi ini tergantung dari tujuan yang hendak dicapai, yaitu mengalokasikan IP address seefisien mungkin.
IP Addressing & Subnetting
1. Pendahuluan
Seperti sudah dibahas pada bagian sebelumnya, IP address terdiri dari dua bagian, yaitu network ID dan host ID. Network ID menunjukkan nomor network, sedangkan host ID mengidentifikasi host dalam satu network. Host ID bersifat unik untuk satu network. Untuk lebih mengefesienkan alokasi IP address yang kita peroleh, kita menggunakan subnetting. Subnetting adalah proses memecah satu kelas IP address menjadi beberapa subnet dengan jumlah host yang lebih sedikit. Untuk menentukan batas network ID dan host ID dalam suatu subnet digunakan subnet mask.
Biasanya kita membentuk subnet dengan mengalokasikan IP address sama rata untuk setiap subnet. Namun hal ini hanya cocok kalau alokasi IP yang kita peroleh cukup besar atau kita menggunakan IP privat. Untuk mengatasi hal itu dapat digunakan VLSM (Variable Length Subnet Mask) yakni pengalokasian IP dengan subnet yang besanya berbeda-beda sehingga alokasi IP dapat menjadi lebih efisien.
2.2 Pengalokasian IP Address
Bagian ini memegang peranan yang sangat penting karena meliputi perencanaan jumlah network yang akan dibuat dan alokasi IP address untuk tiap network. Kita harus membuat subnetting yang tepat untuk keseluruhan jaringan dengan mempertimbangkan kemungkinan perkembangan jaringan di masa yang akan datang. Sebagai contoh, ITB mendapat alokasi IP addres dari INTERNIC (http://www.internic.net) untuk kelas B yaitu 167.205.xxx.xxx.
Jika diimplementasikan dalam suatu jaringan saja (flat), maka dengan IP Address ini kita hanya dapat membuat satu network dengan kapasitas lebih dari 65.000 host. Karena letak fisik jaringan tersebar (dalam beberapa departemen dan laboratorium) dan tingkat kongesti yang akan sangat tinggi, tidak mungkin menghubungkan seluruh komputer dalam kampus ITB hanya dengan menggunakan satu buah jaringan saja (flat).
Maka dilakukan pembagian jaringan sesuai letak fisiknya. Pembagian ini tidak hanya pada level fisik (media) saja, namun juga pada level logik (network layer), yakni pada tingkat IP address.. Pembagian pada level network membutuhkan segmentasi pada IP Address yang akan digunakan. Untuk itu, dilakukan proses pendelegasian IP Address kepada masing-masing jurusan, laboratorium dan lembaga lain yang memiliki LAN dan akan diintegrasikan dalam suatu jaringan kampus yang besar.
Misalkan dilakukan pembagian IP kelas B sebagai berikut :
IP address 167.205.1.xxx dialokasikan untuk cadangan
IP address 167.205.2.xxx dialokasikan untuk departemen A
IP address 167.205.3.xxx dialokasikan untuk departemen B
IP address 167.205.4.xxx dialokasikan untuk unit X dsb.
Pembagian ini didasari oleh jumlah komputer yang terdapat pada suatu jurusan dan prediksi peningkatan populasinya untuk beberapa tahun kemudian. Hal ini dilakukan semata-mata karena IP Address bersifat terbatas, sehingga pemanfaatannya harus diusahakan seefisien mungkin. Jika seorang administrator di salah satu departemen mendapat alokasi IP addres 167.205.48.xxx, maka alokasi ini akan setara dengan sebuah IP address kelas C karena dengan IP ini kita hanya dapat membentuk satu jaringan berkapasitas 256 host yakni dari 167.205.9.0 sampai 167.205.9.255.
Dalam pembagian ini, seorang network administrator di suatu lembaga mendapat alokasi IP Address 167.205.9.xxx. Alokasi ini setara dengan satu buah kelas C karena sama-sama memiliki kapasitas 256 IP Address, yakni dari 167.205.9.0 sampai dengan 167.205.9.255. Misalkan dalam melakukan instalasi jaringan, ia dihadapkan pada permasalahan-permasalahan sebagai berikut :
Dibutuhkan kira-kira 7 buah LAN.
Setiap LAN memiliki kurang dari 30 komputer.
Berdasarkan fakta tersebut, ia membagi 256 buah IP address itu menjadi 8 segmen. Karena pembagian ini berbasis bilangan biner, pembagian hanya dapat dilakukan untuk kelipatan pangkat 2, yakni dibagi 2, dibagi 4, 8, 16, 32 dst. Jika kita tinjau secara biner, maka kita mendapatkan :
Jumlah bit host dari subnet 167.205.9.xxx adalah 8 bit (segmen terakhir).
Jika hanya akan diimplementasikan menjadi satu jaringan, maka jaringan tersebut dapat menampung sekitar 256 host. Jika ia ingin membagi menjadi 2 segmen, maka bit pertama dari 8 bit segmen terakhir IP Address di tutup (mask) menjadi bit network, sehingga masking keseluruhan menjadi 24 + 1 = 25 bit. Bit untuk host menjadi 7 bit. Ia memperoleh 2 buah sub network, dengan kapasitas masing-masing subnet 128 host. Subnet pertama akan menggunakan IP Address dari 167.205.9.(0-127), sedangkan subnet kedua akan menggunakan IP Address 167.205.9.(128-255).
Karena ia ingin membagi menjadi 8 segmen, maka ia harus mengambil 3 bit pertama ( 23 = 8) dari 8 bit segmen terakhir IP Address untuk di tutup (mask) menjadi bit network, sehingga masking keseluruhan menjadi 24 + 3 = 27 bit. Bit untuk host menjadi 5 bit. Dengan masking ini, ia memperoleh 8 buah sub network, dengan kapasitas masing-masing subnet 32 (=25) host. Ilustrasinya dapat dilihat pada Tabel 2-4 berikut :
Studi Kasus :
Anda sebagai penanggungjawab jaringan di suatu kantor yang mempunyai 3 buah departemen mendapat alokasi IP dari suatu ISP (Internet Service Provider) 167.205.9.10xxxxxx (8 bit terakhir adalah biner).
Jika jumlah host tiap-tiap departemen diperkirakan tidak lebih dari 13 buah dan masing masing departemen akan dibuat jaringan lokal (LAN) tersendiri, coba anda tentukan :(semua host mendapat alokasi IP asli)
Subnet yang harus dibuat
Network address
Broadcast address
Penyelesaian :
1.Subnet yang harus dibuat adalah : 11111111.11111111.11111111.11110000
atau 255.255.255.240.
2.Terdapat network address sbb :
167.205.9.10000000
167.205.9.10010000
167.205.9.10100000
167.205.9.10110000
3.Terdapat broadcast address sbb:
167.205.9.10001111 = 167.205.9.143
167.205.9.10011111 = 167.205.9.159
167.205.9.10101111 = 167.205.9.175
167.205.9.10111111 = 167.205.9.191
Selayang Pandang Tentang IP Address
IP address adalah alamat yang diberikan pada jaringan komputer dan peralatan jaringan yang menggunakan protokol TCP/IP. IP address terdiri atas 32 bit angka biner yang dapat dituliskan sebagai empat kelompok angka desimal yang dipisahkan oleh tanda titik seperti 193.160.5.1.
IP address terdiri atas dua bagian yaitu network ID dan host ID, dimana network ID menentukan alamat jaringan komputer, sedangkan host ID menentukan alamat host (komputer, router, switch). Oleh sebab itu IP address memberikan alamat lengkap suatu host beserta alamat jaringan di mana host itu berada.
Kelas-kelas IP Address
Untuk mempermudah pemakaian, bergantung pada kebutuhan pemakai, IP address dibagi dalam tiga kelas seperti diperlihatkan pada table dibawah
IP address kelas A diberikan untuk jaringan dengan jumlah host yang sangat besar. Range IP 1.xxx.xxx.xxx. – 126.xxx.xxx.xxx, terdapat 16.777.214 (16 juta) IP address pada tiap kelas A. Pada IP address kelas A, network ID ialah 8 bit pertama, sedangkan host ID ialah 24 bit berikutnya. Dengan demikian, cara membaca IP address kelas A, misalnya 113.46.5.6 ialah:
Network ID = 113
Host ID = 46.5.6
IP address di atas berarti host nomor 46.5.6 pada network nomor 113. IP address kelas B biasanya dialokasikan untuk jaringan berukuran sedang dan besar. Pada IP address kelas B, network ID ialah 16 bit pertama, sedangkan host ID ialah 16 bit berikutnya. Dengan demikian, cara membaca IP adderss kelas B, misalnya 132.92.121.1 :
Network ID = 132.92
Host ID = 121.1
IP address di atas berarti host nomor 121.1 pada network nomor 132.92. Dengan panjang host ID 16 bit, network dengan IP address kelas B dapat menampung sekitar 65000 host. Range IP 128.0.xxx.xxx – 191.155.xxx.xxx.
IP address kelas C awalnya digunakan untuk jaringan berukuran kecil (LAN). Host ID ialah 8 bit terakhir. Dengan konfigurasi ini, bisa dibentuk sekitar 2 juta network dengan masing-masing network memiliki 256 IP address. Range IP 192.0.0.xxx – 223.255.255.x. Pengalokasian IP address pada dasarnya ialah proses memilih network ID dan host ID yang tepat untuk suatu jaringan. Tepat atau tidaknya konfigurasi ini tergantung dari tujuan yang hendak dicapai, yaitu mengalokasikan IP address seefisien mungkin.
IP Addressing & Subnetting
1. Pendahuluan
Seperti sudah dibahas pada bagian sebelumnya, IP address terdiri dari dua bagian, yaitu network ID dan host ID. Network ID menunjukkan nomor network, sedangkan host ID mengidentifikasi host dalam satu network. Host ID bersifat unik untuk satu network. Untuk lebih mengefesienkan alokasi IP address yang kita peroleh, kita menggunakan subnetting. Subnetting adalah proses memecah satu kelas IP address menjadi beberapa subnet dengan jumlah host yang lebih sedikit. Untuk menentukan batas network ID dan host ID dalam suatu subnet digunakan subnet mask.
Biasanya kita membentuk subnet dengan mengalokasikan IP address sama rata untuk setiap subnet. Namun hal ini hanya cocok kalau alokasi IP yang kita peroleh cukup besar atau kita menggunakan IP privat. Untuk mengatasi hal itu dapat digunakan VLSM (Variable Length Subnet Mask) yakni pengalokasian IP dengan subnet yang besanya berbeda-beda sehingga alokasi IP dapat menjadi lebih efisien.
2.2 Pengalokasian IP Address
Bagian ini memegang peranan yang sangat penting karena meliputi perencanaan jumlah network yang akan dibuat dan alokasi IP address untuk tiap network. Kita harus membuat subnetting yang tepat untuk keseluruhan jaringan dengan mempertimbangkan kemungkinan perkembangan jaringan di masa yang akan datang. Sebagai contoh, ITB mendapat alokasi IP addres dari INTERNIC (http://www.internic.net) untuk kelas B yaitu 167.205.xxx.xxx.
Jika diimplementasikan dalam suatu jaringan saja (flat), maka dengan IP Address ini kita hanya dapat membuat satu network dengan kapasitas lebih dari 65.000 host. Karena letak fisik jaringan tersebar (dalam beberapa departemen dan laboratorium) dan tingkat kongesti yang akan sangat tinggi, tidak mungkin menghubungkan seluruh komputer dalam kampus ITB hanya dengan menggunakan satu buah jaringan saja (flat).
Maka dilakukan pembagian jaringan sesuai letak fisiknya. Pembagian ini tidak hanya pada level fisik (media) saja, namun juga pada level logik (network layer), yakni pada tingkat IP address.. Pembagian pada level network membutuhkan segmentasi pada IP Address yang akan digunakan. Untuk itu, dilakukan proses pendelegasian IP Address kepada masing-masing jurusan, laboratorium dan lembaga lain yang memiliki LAN dan akan diintegrasikan dalam suatu jaringan kampus yang besar.
Misalkan dilakukan pembagian IP kelas B sebagai berikut :
IP address 167.205.1.xxx dialokasikan untuk cadangan
IP address 167.205.2.xxx dialokasikan untuk departemen A
IP address 167.205.3.xxx dialokasikan untuk departemen B
IP address 167.205.4.xxx dialokasikan untuk unit X dsb.
Pembagian ini didasari oleh jumlah komputer yang terdapat pada suatu jurusan dan prediksi peningkatan populasinya untuk beberapa tahun kemudian. Hal ini dilakukan semata-mata karena IP Address bersifat terbatas, sehingga pemanfaatannya harus diusahakan seefisien mungkin. Jika seorang administrator di salah satu departemen mendapat alokasi IP addres 167.205.48.xxx, maka alokasi ini akan setara dengan sebuah IP address kelas C karena dengan IP ini kita hanya dapat membentuk satu jaringan berkapasitas 256 host yakni dari 167.205.9.0 sampai 167.205.9.255.
Dalam pembagian ini, seorang network administrator di suatu lembaga mendapat alokasi IP Address 167.205.9.xxx. Alokasi ini setara dengan satu buah kelas C karena sama-sama memiliki kapasitas 256 IP Address, yakni dari 167.205.9.0 sampai dengan 167.205.9.255. Misalkan dalam melakukan instalasi jaringan, ia dihadapkan pada permasalahan-permasalahan sebagai berikut :
Dibutuhkan kira-kira 7 buah LAN.
Setiap LAN memiliki kurang dari 30 komputer.
Berdasarkan fakta tersebut, ia membagi 256 buah IP address itu menjadi 8 segmen. Karena pembagian ini berbasis bilangan biner, pembagian hanya dapat dilakukan untuk kelipatan pangkat 2, yakni dibagi 2, dibagi 4, 8, 16, 32 dst. Jika kita tinjau secara biner, maka kita mendapatkan :
Jumlah bit host dari subnet 167.205.9.xxx adalah 8 bit (segmen terakhir).
Jika hanya akan diimplementasikan menjadi satu jaringan, maka jaringan tersebut dapat menampung sekitar 256 host. Jika ia ingin membagi menjadi 2 segmen, maka bit pertama dari 8 bit segmen terakhir IP Address di tutup (mask) menjadi bit network, sehingga masking keseluruhan menjadi 24 + 1 = 25 bit. Bit untuk host menjadi 7 bit. Ia memperoleh 2 buah sub network, dengan kapasitas masing-masing subnet 128 host. Subnet pertama akan menggunakan IP Address dari 167.205.9.(0-127), sedangkan subnet kedua akan menggunakan IP Address 167.205.9.(128-255).
Karena ia ingin membagi menjadi 8 segmen, maka ia harus mengambil 3 bit pertama ( 23 = 8) dari 8 bit segmen terakhir IP Address untuk di tutup (mask) menjadi bit network, sehingga masking keseluruhan menjadi 24 + 3 = 27 bit. Bit untuk host menjadi 5 bit. Dengan masking ini, ia memperoleh 8 buah sub network, dengan kapasitas masing-masing subnet 32 (=25) host. Ilustrasinya dapat dilihat pada Tabel 2-4 berikut :
Studi Kasus :
Anda sebagai penanggungjawab jaringan di suatu kantor yang mempunyai 3 buah departemen mendapat alokasi IP dari suatu ISP (Internet Service Provider) 167.205.9.10xxxxxx (8 bit terakhir adalah biner).
Jika jumlah host tiap-tiap departemen diperkirakan tidak lebih dari 13 buah dan masing masing departemen akan dibuat jaringan lokal (LAN) tersendiri, coba anda tentukan :(semua host mendapat alokasi IP asli)
Subnet yang harus dibuat
Network address
Broadcast address
Penyelesaian :
1.Subnet yang harus dibuat adalah : 11111111.11111111.11111111.11110000
atau 255.255.255.240.
2.Terdapat network address sbb :
167.205.9.10000000
167.205.9.10010000
167.205.9.10100000
167.205.9.10110000
3.Terdapat broadcast address sbb:
167.205.9.10001111 = 167.205.9.143
167.205.9.10011111 = 167.205.9.159
167.205.9.10101111 = 167.205.9.175
167.205.9.10111111 = 167.205.9.191
ip addres & subnetting
subnetting & IP Address
Pengertian Subnetting
Subnetting adalah suatu metode untuk memperbanyak network ID dari suatu network ID yang telahanda miliki. Contoh kasus diperiukannya subnetting: Sebuah perusahaan memperoleh IP address network kelas C 192.168.0.0. Dengan IP network tersebut maka akan didapatkan sebanyak 254 (28-2) alamat IP address yang dapat kita pasang pada komputer yang terkoneksi ke jaringan. Yang menjadi masalah adalah bagaimana mengelola jaringan dengan jumlah komputer lebih dari 254 tersebut. Tentu tidak mungkin jika anda harus menempatkan komputer sebanyak itu dalam satu lokasi. Jika anda hanya menggunakan 30 komputer dalam satu kantor, maka ada 224 IP address yang tidak akan terpakai. Untuk mensiasati jumlah IP address yang tidak terpakai tersebut dengan jalan membagi IP network menjadi beberapa network yang lebih kecil yang disebut subnet.
Berikut Adalah bahan Bacaan RINGAN Tentang Perhitungan Subnetting, yang menurut saya bagus untuk di jadikan referensi.
Penghitungan subnetting bisa dilakukan dengan dua cara, cara binary yang relatif lambat dan cara khusus yang lebih cepat. Pada hakekatnya semua pertanyaan tentang subnetting akan berkisar di empat masalah: Jumlah Subnet, Jumlah Host per Subnet, Blok Subnet, dan Alamat Host- Broadcast.
Penulisan IP address umumnya adalah dengan 192.168.1.2. Namun adakalanya ditulis dengan 192.168.1.2/24, apa ini artinya? Artinya bahwa IP address 192.168.1.2 dengan subnet mask 255.255.255.0. Lho kok bisa seperti itu? Ya, /24 diambil dari penghitungan bahwa 24 bit subnet mask diselubung dengan binari 1. Atau dengan kata lain, subnet masknya adalah: 11111111.11111111.11111111.00000000 (255.255.255.0). Konsep ini yang disebut dengan CIDR (Classless Inter-Domain Routing) yang diperkenalkan pertama kali tahun 1992 oleh IEFT.
Pertanyaan berikutnya adalah Subnet Mask berapa saja yang bisa digunakan untuk melakukan subnetting? Ini terjawab dengan tabel di bawah:
Subnet Mask Nilai CIDR
255.128.0.0 /9
255.192.0.0 /10
255.224.0.0 /11
255.240.0.0 /12
255.248.0.0 /13
255.252.0.0 /14
255.254.0.0 /15
255.255.0.0 /16
255.255.128.0 /17
255.255.192.0 /18
255.255.224.0 /19
Subnet Mask Nilai CIDR
255.255.240.0 /20
255.255.248.0 /21
255.255.252.0 /22
255.255.254.0 /23
255.255.255.0 /24
255.255.255.128 /25
255.255.255.192 /26
255.255.255.224 /27
255.255.255.240 /28
255.255.255.248 /29
255.255.255.252 /30
SUBNETTING PADA IP ADDRESS CLASS C
Ok, sekarang mari langsung latihan saja. Subnetting seperti apa yang terjadi dengan sebuah NETWORK ADDRESS 192.168.1.0/26 ?
Analisa: 192.168.1.0 berarti kelas C dengan Subnet Mask /26 berarti 11111111.11111111.11111111.11000000 (255.255.255.192).
Penghitungan: Seperti sudah saya sebutkan sebelumnya semua pertanyaan tentang subnetting akan berpusat di 4 hal, jumlah subnet, jumlah host per subnet, blok subnet, alamat host dan broadcast yang valid. Jadi kita selesaikan dengan urutan seperti itu:
1. Jumlah Subnet = 2x, dimana x adalah banyaknya binari 1 pada oktet terakhir subnet mask (2 oktet terakhir untuk kelas B, dan 3 oktet terakhir untuk kelas A). Jadi Jumlah Subnet adalah 22 = 4 subnet
2. Jumlah Host per Subnet = 2y – 2, dimana y adalah adalah kebalikan dari x yaitu banyaknya binari 0 pada oktet terakhir subnet. Jadi jumlah host per subnet adalah 26 – 2 = 62 host
3. Blok Subnet = 256 – 192 (nilai oktet terakhir subnet mask) = 64. Subnet berikutnya adalah 64 + 64 = 128, dan 128+64=192. Jadi subnet lengkapnya adalah 0, 64, 128, 192.
4. Bagaimana dengan alamat host dan broadcast yang valid? Kita langsung buat tabelnya. Sebagai catatan, host pertama adalah 1 angka setelah subnet, dan broadcast adalah 1 angka sebelum subnet berikutnya.
Subnet 192.168.1.0 192.168.1.64 192.168.1.128 192.168.1.192
Host Pertama 192.168.1.1 192.168.1.65 192.168.1.129 192.168.1.193
Host Terakhir 192.168.1.62 192.168.1.126 192.168.1.190 192.168.1.254
Broadcast 192.168.1.63 192.168.1.127 192.168.1.191 192.168.1.255
Kita sudah selesaikan subnetting untuk IP address Class C. Dan kita bisa melanjutkan lagi untuk subnet mask yang lain, dengan konsep dan teknik yang sama. Subnet mask yang bisa digunakan untuk subnetting class C adalah seperti di bawah. Silakan anda coba menghitung seperti cara diatas untuk subnetmask lainnya.
Subnet Mask Nilai CIDR
255.255.255.128 /25
255.255.255.192 /26
255.255.255.224 /27
255.255.255.240 /28
255.255.255.248 /29
255.255.255.252 /30
SUBNETTING PADA IP ADDRESS CLASS B
Berikutnya kita akan mencoba melakukan subnetting untuk IP address class B. Pertama, subnet mask yang bisa digunakan untuk subnetting class B adalah seperti dibawah. Sengaja saya pisahkan jadi dua, blok sebelah kiri dan kanan karena masing-masing berbeda teknik terutama untuk oktet yang “dimainkan” berdasarkan blok subnetnya. CIDR /17 sampai /24 caranya sama persis dengan subnetting Class C, hanya blok subnetnya kita masukkan langsung ke oktet ketiga, bukan seperti Class C yang “dimainkan” di oktet keempat. Sedangkan CIDR /25 sampai /30 (kelipatan) blok subnet kita “mainkan” di oktet keempat, tapi setelah selesai oktet ketiga berjalan maju (coeunter) dari 0, 1, 2, 3, dst.
Subnet Mask Nilai CIDR
255.255.128.0 /17
255.255.192.0 /18
255.255.224.0 /19
255.255.240.0 /20
255.255.248.0 /21
255.255.252.0 /22
255.255.254.0 /23
255.255.255.0 /24
Subnet Mask Nilai CIDR
255.255.255.128 /25
255.255.255.192 /26
255.255.255.224 /27
255.255.255.240 /28
255.255.255.248 /29
255.255.255.252 /30
Ok, kita coba dua soal untuk kedua teknik subnetting untuk Class B. Kita mulai dari yang menggunakan subnetmask dengan CIDR /17 sampai /24. Contoh network address 172.16.0.0/18.
Analisa: 172.16.0.0 berarti kelas B, dengan Subnet Mask /18 berarti 11111111.11111111.11000000.00000000 (255.255.192.0).
Penghitungan:
1. Jumlah Subnet = 2x, dimana x adalah banyaknya binari 1 pada 2 oktet terakhir. Jadi Jumlah Subnet adalah 22 = 4 subnet
2. Jumlah Host per Subnet = 2y – 2, dimana y adalah adalah kebalikan dari x yaitu banyaknya binari 0 pada 2 oktet terakhir. Jadi jumlah host per subnet adalah 214 – 2 = 16.382 host
3. Blok Subnet = 256 – 192 = 64. Subnet berikutnya adalah 64 + 64 = 128, dan 128+64=192. Jadi subnet lengkapnya adalah 0, 64, 128, 192.
4. Alamat host dan broadcast yang valid?
Subnet 172.16.0.0 172.16.64.0 172.16.128.0 172.16.192.0
Host Pertama 172.16.0.1 172.16.64.1 172.16.128.1 172.16.192.1
Host Terakhir 172.16.63.254 172.16.127.254 172.16.191.254 172.16.255.254
Broadcast 172.16.63.255 172.16.127.255 172.16.191.255 172.16..255.255
Berikutnya kita coba satu lagi untuk Class B khususnya untuk yang menggunakan subnetmask CIDR /25 sampai /30. Contoh network address 172.16.0.0/25.
Analisa: 172.16.0.0 berarti kelas B, dengan Subnet Mask /25 berarti 11111111.11111111.11111111.10000000 (255.255.255.128).
Penghitungan:
1. Jumlah Subnet = 29 = 512 subnet
2. Jumlah Host per Subnet = 27 – 2 = 126 host
3. Blok Subnet = 256 – 128 = 128. Jadi lengkapnya adalah (0, 128)
4. Alamat host dan broadcast yang valid?
Subnet 172.16.0.0 172.16.0.128 172.16.1.0 … 172.16.255.128
Host Pertama 172.16.0.1 172.16.0.129 172.16.1.1 … 172.16.255.129
Host Terakhir 172.16.0.126 172.16.0.254 172.16.1.126 … 172.16.255.254
Broadcast 172.16.0.127 172.16.0.255 172.16.1.127 … 172.16.255.255
Masih bingung juga? Ok sebelum masuk ke Class A, coba ulangi lagi dari Class C, dan baca pelan-pelan
SUBNETTING PADA IP ADDRESS CLASS A
Kalau sudah mantab dan paham, kita lanjut ke Class A. Konsepnya semua sama saja. Perbedaannya adalah di OKTET mana kita mainkan blok subnet. Kalau Class C di oktet ke 4 (terakhir), kelas B di Oktet 3 dan 4 (2 oktet terakhir), kalau Class A di oktet 2, 3 dan 4 (3 oktet terakhir). Kemudian subnet mask yang bisa digunakan untuk subnetting class A adalah semua subnet mask dari CIDR /8 sampai /30.
Kita coba latihan untuk network address 10.0.0.0/16.
Analisa: 10.0.0.0 berarti kelas A, dengan Subnet Mask /16 berarti 11111111.11111111.00000000.00000000 (255.255.0.0).
Penghitungan:
1. Jumlah Subnet = 28 = 256 subnet
2. Jumlah Host per Subnet = 216 – 2 = 65534 host
3. Blok Subnet = 256 – 255 = 1. Jadi subnet lengkapnya: 0,1,2,3,4, etc.
4. Alamat host dan broadcast yang valid?
Subnet 10.0.0.0 10.1.0.0 … 10.254.0.0 10.255.0.0
Host Pertama 10.0.0.1 10.1.0.1 … 10.254.0.1 10.255.0.1
Host Terakhir 10.0.255.254 10.1.255.254 … 10.254.255.254 10.255.255.254
Broadcast 10.0.255.255 10.1.255.255 … 10.254.255.255 10.255.255.255
Mudah-mudahan sudah setelah anda membaca paragraf terakhir ini, anda sudah memahami penghitungan subnetting dengan baik. Kalaupun belum paham juga, anda ulangi terus artikel ini pelan-pelan dari atas. Untuk teknik hapalan subnetting yang lebih cepat, tunggu di artikel berikutnya
Catatan: Semua penghitungan subnet diatas berasumsikan bahwa IP Subnet-Zeroes (dan IP Subnet-Ones) dihitung secara default. Buku versi terbaru Todd Lamle dan juga CCNA setelah 2005 sudah mengakomodasi masalah IP Subnet-Zeroes (dan IP Subnet-Ones) ini. CCNA pre-2005 tidak memasukkannya secara default (meskipun di kenyataan kita bisa mengaktifkannya dengan command ip subnet-zeroes), sehingga mungkin dalam beberapa buku tentang CCNA serta soal-soal test CNAP, anda masih menemukan rumus penghitungan Jumlah Subnet = 2x – 2
Tahap berikutnya adalah silakan download dan kerjakan soal latihan subnetting. Jangan lupa mengikuti artikel tentang Teknik Mengerjakan Soal Subnetting untuk memperkuat pemahaman anda dan meningkatkan kemampuan dalam mengerjakan soal dalam waktu terbatas.
Source Mas Rommy.
REFERENSI
1. Todd Lamle, CCNA Study Guide 5th Edition, Sybex, 2005.
2. Module CCNA 1 Chapter 9-10, Cisco Networking Academy Program (CNAP), Cisco Systems.
3. Hendra Wijaya, Cisco Router, Elex Media Komputindo, 2004.
Berikut soal latihan, tentukan :
a) Alamat Subnet Mask,
b) Alamat Subnet,
c) Alamat Broadcast,
d) Jumlah Host yang dapat digunakan,
e) serta Alamat Subnet ke-3
dari alamat sebagai berikut:
1. 198.53.67.0/30
2. 202.151.37.0/26
3. 191.22.24.0/22
Saya coba berhitung-hitung seperti demikian
1. 198.53.67.0/30 –> IP class C:
Subnet Mask: /30 = 11111111.11111111.11111111.11111100 = 255.255.255.252
Menghitung Subnet:
Jumlah Subnet: 26 = 64 Subnet
Jumlah Host per Subnet: 22 – 2 = 2 host
Blok Subnet: 256 – 252 = 4, blok berikutnya: 4+4 = 8, 8+4 = 12, dst…
jadi blok Subnet: 0, 4, 8, 12, dst…
Host dan broadcast yang valid:
Maka dari perhitungan diperoleh:
• Alamat Subnet Mask: 255.255.255.252
• Alamat Subnet: 198.53.67.0, 198.53.67.4, 198.53.67.8, 198.53.67.12, … , 198.53.67.252
• Alamat Broadcast: 198.53.67.3, 198.53.67.7, 198.53.67.11, 198.53.67.15 … 198.53.67.255
• Jumlah host yang dapat digunakan: 64×2 = 128
• Alamat Subnet ke-3: 198.53.67.8
2.202.151.37.0/26 -> IP class C
Subnet Mask: /26 = 11111111.11111111.11111111.11000000 = 255.255.255.192
Menghitung Subnet:
Jumlah Subnet: 22 = 4 Subnet
Jumlah Host per Subnet: 26 – 2 = 62 host
Blok Subnet: 256 – 192 = 64, blok berikutnya: 64+64 = 128, 128+64 = 192
Jadi blok Alamat Subnet: 0, 64, 128, 192
Host dan broadcast yang valid:
Maka dari perhitungan diperoleh:
• Alamat Subnet Mask: 255.255.255.192
• Alamat Subnet: 202.151.37.0, 202.151.37.64, 202.151.37.128, 202.151.37.192
• Alamat Broadcast: 202.151.37.63, 202.151.37.127, 202.151.37.191, 202.151.37.255
• Jumlah host yang dapat digunakan: 4×62 = 248
• Alamat Subnet ke-3: 202.151.37.128
3.191.22.24.0/22 –> IP class B
Subnet Mask: /22 = 11111111.11111111.11111100.00000000 = 255.255.252.0
Menghitung Subnet:
Jumlah Subnet: 26 = 64 Subnet
Jumlah Host per Subnet: 22– 2 = 2 host
Jumlah Blok Subnet: 256 – 252 = 4, blok berikutnya: 4+4 = 8, 8+4 = 12, dst…
Jadi blok Alamat Subnet: 0, 4, 8, 12, 16, dst…
Alamat host yang valid:
• Alamat Subnet Mask: 255.255.252.0
• Alamat Subnet: 191.22.24.0, 191.22.24.4, 191.22.24.8, …, 191.22.24.252
• Alamat Broadcast: 191.22.24.3, 191.22.24.7, 191.22.24.11, …, 191.22.24.255
• Jumlah host yang dapat digunakan: 2×64 = 128
• Alamat Subnet ke-3: 191.22.24.8
Pengertian Subnetting
Subnetting adalah suatu metode untuk memperbanyak network ID dari suatu network ID yang telahanda miliki. Contoh kasus diperiukannya subnetting: Sebuah perusahaan memperoleh IP address network kelas C 192.168.0.0. Dengan IP network tersebut maka akan didapatkan sebanyak 254 (28-2) alamat IP address yang dapat kita pasang pada komputer yang terkoneksi ke jaringan. Yang menjadi masalah adalah bagaimana mengelola jaringan dengan jumlah komputer lebih dari 254 tersebut. Tentu tidak mungkin jika anda harus menempatkan komputer sebanyak itu dalam satu lokasi. Jika anda hanya menggunakan 30 komputer dalam satu kantor, maka ada 224 IP address yang tidak akan terpakai. Untuk mensiasati jumlah IP address yang tidak terpakai tersebut dengan jalan membagi IP network menjadi beberapa network yang lebih kecil yang disebut subnet.
Berikut Adalah bahan Bacaan RINGAN Tentang Perhitungan Subnetting, yang menurut saya bagus untuk di jadikan referensi.
Penghitungan subnetting bisa dilakukan dengan dua cara, cara binary yang relatif lambat dan cara khusus yang lebih cepat. Pada hakekatnya semua pertanyaan tentang subnetting akan berkisar di empat masalah: Jumlah Subnet, Jumlah Host per Subnet, Blok Subnet, dan Alamat Host- Broadcast.
Penulisan IP address umumnya adalah dengan 192.168.1.2. Namun adakalanya ditulis dengan 192.168.1.2/24, apa ini artinya? Artinya bahwa IP address 192.168.1.2 dengan subnet mask 255.255.255.0. Lho kok bisa seperti itu? Ya, /24 diambil dari penghitungan bahwa 24 bit subnet mask diselubung dengan binari 1. Atau dengan kata lain, subnet masknya adalah: 11111111.11111111.11111111.00000000 (255.255.255.0). Konsep ini yang disebut dengan CIDR (Classless Inter-Domain Routing) yang diperkenalkan pertama kali tahun 1992 oleh IEFT.
Pertanyaan berikutnya adalah Subnet Mask berapa saja yang bisa digunakan untuk melakukan subnetting? Ini terjawab dengan tabel di bawah:
Subnet Mask Nilai CIDR
255.128.0.0 /9
255.192.0.0 /10
255.224.0.0 /11
255.240.0.0 /12
255.248.0.0 /13
255.252.0.0 /14
255.254.0.0 /15
255.255.0.0 /16
255.255.128.0 /17
255.255.192.0 /18
255.255.224.0 /19
Subnet Mask Nilai CIDR
255.255.240.0 /20
255.255.248.0 /21
255.255.252.0 /22
255.255.254.0 /23
255.255.255.0 /24
255.255.255.128 /25
255.255.255.192 /26
255.255.255.224 /27
255.255.255.240 /28
255.255.255.248 /29
255.255.255.252 /30
SUBNETTING PADA IP ADDRESS CLASS C
Ok, sekarang mari langsung latihan saja. Subnetting seperti apa yang terjadi dengan sebuah NETWORK ADDRESS 192.168.1.0/26 ?
Analisa: 192.168.1.0 berarti kelas C dengan Subnet Mask /26 berarti 11111111.11111111.11111111.11000000 (255.255.255.192).
Penghitungan: Seperti sudah saya sebutkan sebelumnya semua pertanyaan tentang subnetting akan berpusat di 4 hal, jumlah subnet, jumlah host per subnet, blok subnet, alamat host dan broadcast yang valid. Jadi kita selesaikan dengan urutan seperti itu:
1. Jumlah Subnet = 2x, dimana x adalah banyaknya binari 1 pada oktet terakhir subnet mask (2 oktet terakhir untuk kelas B, dan 3 oktet terakhir untuk kelas A). Jadi Jumlah Subnet adalah 22 = 4 subnet
2. Jumlah Host per Subnet = 2y – 2, dimana y adalah adalah kebalikan dari x yaitu banyaknya binari 0 pada oktet terakhir subnet. Jadi jumlah host per subnet adalah 26 – 2 = 62 host
3. Blok Subnet = 256 – 192 (nilai oktet terakhir subnet mask) = 64. Subnet berikutnya adalah 64 + 64 = 128, dan 128+64=192. Jadi subnet lengkapnya adalah 0, 64, 128, 192.
4. Bagaimana dengan alamat host dan broadcast yang valid? Kita langsung buat tabelnya. Sebagai catatan, host pertama adalah 1 angka setelah subnet, dan broadcast adalah 1 angka sebelum subnet berikutnya.
Subnet 192.168.1.0 192.168.1.64 192.168.1.128 192.168.1.192
Host Pertama 192.168.1.1 192.168.1.65 192.168.1.129 192.168.1.193
Host Terakhir 192.168.1.62 192.168.1.126 192.168.1.190 192.168.1.254
Broadcast 192.168.1.63 192.168.1.127 192.168.1.191 192.168.1.255
Kita sudah selesaikan subnetting untuk IP address Class C. Dan kita bisa melanjutkan lagi untuk subnet mask yang lain, dengan konsep dan teknik yang sama. Subnet mask yang bisa digunakan untuk subnetting class C adalah seperti di bawah. Silakan anda coba menghitung seperti cara diatas untuk subnetmask lainnya.
Subnet Mask Nilai CIDR
255.255.255.128 /25
255.255.255.192 /26
255.255.255.224 /27
255.255.255.240 /28
255.255.255.248 /29
255.255.255.252 /30
SUBNETTING PADA IP ADDRESS CLASS B
Berikutnya kita akan mencoba melakukan subnetting untuk IP address class B. Pertama, subnet mask yang bisa digunakan untuk subnetting class B adalah seperti dibawah. Sengaja saya pisahkan jadi dua, blok sebelah kiri dan kanan karena masing-masing berbeda teknik terutama untuk oktet yang “dimainkan” berdasarkan blok subnetnya. CIDR /17 sampai /24 caranya sama persis dengan subnetting Class C, hanya blok subnetnya kita masukkan langsung ke oktet ketiga, bukan seperti Class C yang “dimainkan” di oktet keempat. Sedangkan CIDR /25 sampai /30 (kelipatan) blok subnet kita “mainkan” di oktet keempat, tapi setelah selesai oktet ketiga berjalan maju (coeunter) dari 0, 1, 2, 3, dst.
Subnet Mask Nilai CIDR
255.255.128.0 /17
255.255.192.0 /18
255.255.224.0 /19
255.255.240.0 /20
255.255.248.0 /21
255.255.252.0 /22
255.255.254.0 /23
255.255.255.0 /24
Subnet Mask Nilai CIDR
255.255.255.128 /25
255.255.255.192 /26
255.255.255.224 /27
255.255.255.240 /28
255.255.255.248 /29
255.255.255.252 /30
Ok, kita coba dua soal untuk kedua teknik subnetting untuk Class B. Kita mulai dari yang menggunakan subnetmask dengan CIDR /17 sampai /24. Contoh network address 172.16.0.0/18.
Analisa: 172.16.0.0 berarti kelas B, dengan Subnet Mask /18 berarti 11111111.11111111.11000000.00000000 (255.255.192.0).
Penghitungan:
1. Jumlah Subnet = 2x, dimana x adalah banyaknya binari 1 pada 2 oktet terakhir. Jadi Jumlah Subnet adalah 22 = 4 subnet
2. Jumlah Host per Subnet = 2y – 2, dimana y adalah adalah kebalikan dari x yaitu banyaknya binari 0 pada 2 oktet terakhir. Jadi jumlah host per subnet adalah 214 – 2 = 16.382 host
3. Blok Subnet = 256 – 192 = 64. Subnet berikutnya adalah 64 + 64 = 128, dan 128+64=192. Jadi subnet lengkapnya adalah 0, 64, 128, 192.
4. Alamat host dan broadcast yang valid?
Subnet 172.16.0.0 172.16.64.0 172.16.128.0 172.16.192.0
Host Pertama 172.16.0.1 172.16.64.1 172.16.128.1 172.16.192.1
Host Terakhir 172.16.63.254 172.16.127.254 172.16.191.254 172.16.255.254
Broadcast 172.16.63.255 172.16.127.255 172.16.191.255 172.16..255.255
Berikutnya kita coba satu lagi untuk Class B khususnya untuk yang menggunakan subnetmask CIDR /25 sampai /30. Contoh network address 172.16.0.0/25.
Analisa: 172.16.0.0 berarti kelas B, dengan Subnet Mask /25 berarti 11111111.11111111.11111111.10000000 (255.255.255.128).
Penghitungan:
1. Jumlah Subnet = 29 = 512 subnet
2. Jumlah Host per Subnet = 27 – 2 = 126 host
3. Blok Subnet = 256 – 128 = 128. Jadi lengkapnya adalah (0, 128)
4. Alamat host dan broadcast yang valid?
Subnet 172.16.0.0 172.16.0.128 172.16.1.0 … 172.16.255.128
Host Pertama 172.16.0.1 172.16.0.129 172.16.1.1 … 172.16.255.129
Host Terakhir 172.16.0.126 172.16.0.254 172.16.1.126 … 172.16.255.254
Broadcast 172.16.0.127 172.16.0.255 172.16.1.127 … 172.16.255.255
Masih bingung juga? Ok sebelum masuk ke Class A, coba ulangi lagi dari Class C, dan baca pelan-pelan
SUBNETTING PADA IP ADDRESS CLASS A
Kalau sudah mantab dan paham, kita lanjut ke Class A. Konsepnya semua sama saja. Perbedaannya adalah di OKTET mana kita mainkan blok subnet. Kalau Class C di oktet ke 4 (terakhir), kelas B di Oktet 3 dan 4 (2 oktet terakhir), kalau Class A di oktet 2, 3 dan 4 (3 oktet terakhir). Kemudian subnet mask yang bisa digunakan untuk subnetting class A adalah semua subnet mask dari CIDR /8 sampai /30.
Kita coba latihan untuk network address 10.0.0.0/16.
Analisa: 10.0.0.0 berarti kelas A, dengan Subnet Mask /16 berarti 11111111.11111111.00000000.00000000 (255.255.0.0).
Penghitungan:
1. Jumlah Subnet = 28 = 256 subnet
2. Jumlah Host per Subnet = 216 – 2 = 65534 host
3. Blok Subnet = 256 – 255 = 1. Jadi subnet lengkapnya: 0,1,2,3,4, etc.
4. Alamat host dan broadcast yang valid?
Subnet 10.0.0.0 10.1.0.0 … 10.254.0.0 10.255.0.0
Host Pertama 10.0.0.1 10.1.0.1 … 10.254.0.1 10.255.0.1
Host Terakhir 10.0.255.254 10.1.255.254 … 10.254.255.254 10.255.255.254
Broadcast 10.0.255.255 10.1.255.255 … 10.254.255.255 10.255.255.255
Mudah-mudahan sudah setelah anda membaca paragraf terakhir ini, anda sudah memahami penghitungan subnetting dengan baik. Kalaupun belum paham juga, anda ulangi terus artikel ini pelan-pelan dari atas. Untuk teknik hapalan subnetting yang lebih cepat, tunggu di artikel berikutnya
Catatan: Semua penghitungan subnet diatas berasumsikan bahwa IP Subnet-Zeroes (dan IP Subnet-Ones) dihitung secara default. Buku versi terbaru Todd Lamle dan juga CCNA setelah 2005 sudah mengakomodasi masalah IP Subnet-Zeroes (dan IP Subnet-Ones) ini. CCNA pre-2005 tidak memasukkannya secara default (meskipun di kenyataan kita bisa mengaktifkannya dengan command ip subnet-zeroes), sehingga mungkin dalam beberapa buku tentang CCNA serta soal-soal test CNAP, anda masih menemukan rumus penghitungan Jumlah Subnet = 2x – 2
Tahap berikutnya adalah silakan download dan kerjakan soal latihan subnetting. Jangan lupa mengikuti artikel tentang Teknik Mengerjakan Soal Subnetting untuk memperkuat pemahaman anda dan meningkatkan kemampuan dalam mengerjakan soal dalam waktu terbatas.
Source Mas Rommy.
REFERENSI
1. Todd Lamle, CCNA Study Guide 5th Edition, Sybex, 2005.
2. Module CCNA 1 Chapter 9-10, Cisco Networking Academy Program (CNAP), Cisco Systems.
3. Hendra Wijaya, Cisco Router, Elex Media Komputindo, 2004.
Berikut soal latihan, tentukan :
a) Alamat Subnet Mask,
b) Alamat Subnet,
c) Alamat Broadcast,
d) Jumlah Host yang dapat digunakan,
e) serta Alamat Subnet ke-3
dari alamat sebagai berikut:
1. 198.53.67.0/30
2. 202.151.37.0/26
3. 191.22.24.0/22
Saya coba berhitung-hitung seperti demikian
1. 198.53.67.0/30 –> IP class C:
Subnet Mask: /30 = 11111111.11111111.11111111.11111100 = 255.255.255.252
Menghitung Subnet:
Jumlah Subnet: 26 = 64 Subnet
Jumlah Host per Subnet: 22 – 2 = 2 host
Blok Subnet: 256 – 252 = 4, blok berikutnya: 4+4 = 8, 8+4 = 12, dst…
jadi blok Subnet: 0, 4, 8, 12, dst…
Host dan broadcast yang valid:
Maka dari perhitungan diperoleh:
• Alamat Subnet Mask: 255.255.255.252
• Alamat Subnet: 198.53.67.0, 198.53.67.4, 198.53.67.8, 198.53.67.12, … , 198.53.67.252
• Alamat Broadcast: 198.53.67.3, 198.53.67.7, 198.53.67.11, 198.53.67.15 … 198.53.67.255
• Jumlah host yang dapat digunakan: 64×2 = 128
• Alamat Subnet ke-3: 198.53.67.8
2.202.151.37.0/26 -> IP class C
Subnet Mask: /26 = 11111111.11111111.11111111.11000000 = 255.255.255.192
Menghitung Subnet:
Jumlah Subnet: 22 = 4 Subnet
Jumlah Host per Subnet: 26 – 2 = 62 host
Blok Subnet: 256 – 192 = 64, blok berikutnya: 64+64 = 128, 128+64 = 192
Jadi blok Alamat Subnet: 0, 64, 128, 192
Host dan broadcast yang valid:
Maka dari perhitungan diperoleh:
• Alamat Subnet Mask: 255.255.255.192
• Alamat Subnet: 202.151.37.0, 202.151.37.64, 202.151.37.128, 202.151.37.192
• Alamat Broadcast: 202.151.37.63, 202.151.37.127, 202.151.37.191, 202.151.37.255
• Jumlah host yang dapat digunakan: 4×62 = 248
• Alamat Subnet ke-3: 202.151.37.128
3.191.22.24.0/22 –> IP class B
Subnet Mask: /22 = 11111111.11111111.11111100.00000000 = 255.255.252.0
Menghitung Subnet:
Jumlah Subnet: 26 = 64 Subnet
Jumlah Host per Subnet: 22– 2 = 2 host
Jumlah Blok Subnet: 256 – 252 = 4, blok berikutnya: 4+4 = 8, 8+4 = 12, dst…
Jadi blok Alamat Subnet: 0, 4, 8, 12, 16, dst…
Alamat host yang valid:
• Alamat Subnet Mask: 255.255.252.0
• Alamat Subnet: 191.22.24.0, 191.22.24.4, 191.22.24.8, …, 191.22.24.252
• Alamat Broadcast: 191.22.24.3, 191.22.24.7, 191.22.24.11, …, 191.22.24.255
• Jumlah host yang dapat digunakan: 2×64 = 128
• Alamat Subnet ke-3: 191.22.24.8
Selasa, 19 Juli 2011
instalasi jaringan internet
Cara menginstal jaringan internet
Intranet dan Internet
Intranet dan internet pada hakekatnya adalah jaringan komputer pada tingkatan WAN. Gambar di bawah ini mungkin bisa memberi gambaran agak jelas mengenai perbedaan keduanya. Dari gambar terlihat bahwa intranet lebih pada hubungan antar komputer yang bersifat private network, tidak sembarang orang bisa mengaksesnya bahkan bisa jadi tidak terhubung dengan jaringan luar (internet). Intranet biasa digunakan pada perusahaan – perusahaan besar yang membutuhkan keamanan dan privasi yang tinggi, seperti perusahaan–perusahaan bank. Aplikasi–aplikasi yang biasa dijumpai di internet juga bisa diadakan pada intranet asalkan menyediakan server.
Interconnected Network atau yang lebih populer dengan sebutan Internet yang juga merupakan gabungan dari tiga jenis jaringan diatas (LAN, MAN, WAN) adalah sebuah sistem komunikasi global yang menghubungkan komputer-komputer dan jaringan-jaringan komputer di seluruh dunia. Setiap komputer dan jaringan terhubung – secara langsung maupun tidak langsung – ke beberapa jalur utama yang disebut internet backbone dan dibedakan satu dengan yang lainnya menggunakan alamat unik yang biasa disebut dengan alamat IP 32 bit, contoh: 202.155.4.230.
Komputer dan jaringan dengan berbagai platform yang mempunyai perbedaan dan ciri khas masing-masing (Unix, Linux, Windows, Mac, dll) bertukar informasi dengan sebuah protokol standar yang dikenal dengan nama TCP/IP (Transmission Control Protocol/Internet Protocol).
Internet merupakan public network, siapa saja bisa menyambungkan komputernya pada internet asal mengikuti aturan – aturan yang telah ditetapkan bersama. Saat ini jaringan internet telah melingkupi hampir seluruh dunia. Aplikasi yang ditawarkan diantaranya adalah web (HTTP), email (POP & SMTP), chat, FTP, Telnet, dll. Jika sebuah badan usaha / bisnis / institusi mengekspose sebagian dari internal jaringannya ke komunitas di luar, hal ini di sebut ekstranet. Memang biasanya tidak semua isi intranet dikeluarkan ke publik untuk menjadikan intranet menjadi ekstranet.
Misalnya kita sedang membeli software, buku dll dari sebuah e-toko, maka biasanya kita dapat mengakses sebagian dari intranet toko tersebut. Badan usaha / perusahaan dapat memblokir akses ke intranet mereka melalui router dan meletakan firewall. Firewall adalah sebuah perangkat lunak / perangkat keras yang mengatur akses seseorang kedalam intranet. Proteksi dilakukan melalui berbagai parameter jaringan apakah itu IP address,
nomor port dll. Jika firewall di aktifkan maka akses dapat dikontrol sehingga kita hanya dapat mengakses sebagian saja dari Intranet perusahaan tersebut yang kemudian dikenal sebagai extranet.
———————————————————
Kami melayani Jasa Instalasi Jaringan Wireless (Wifi), Rt-Rw Net dan system security CCTV kamera baik untuk dinas, kantor, sekolah maupun pribadi khusus untuk wilayah di kota Tarakan.
I. JASA INSTALASI JARINGAN WIRELESS (WIFI)
Kami melayani jasa instalasi jaringan wireless (wifi) untuk dinas, kantor, perusahaan, maupun sekolah yang ada di kota Tarakan yang bisa menghubungkan antar komputer menjadi sebuah network, baik untuk aplikasi data, voice, tele conference, video conference, VOIP maupun aplikasi security cctv camera system.
Jaringan Wifi yang telah kami bangun saat ini mampu hingga jangkauan 70 km, aplikasi point to multi point sedangkan untuk aplikasi point to point hingga jangkauan 100 km denga syarat LOS tanpa penghalang gunung diantaranya.
II. JASA INSTALASI RT-RW NET
Kami melayani jasa instalasi Rt-Rw Net yang telah dilengkapi dengan Firewall, User-manager, Bandwidth management, Proxy, captive Portal, MRTG, dan Billing System. system dan performa yang handal dan mudah untuk memanagementnya, baik management user, maupun management bandwidth tiap-tiap user.
1. Firewall, packet dan data dan security filter.
2. User Manager, management user.
3. Bandwidth Management, management bandwidth untuk masing-masing user.
4. Proxy, Chache proxy.
5. MRTG, Monitoring bandwidth yang digunakan.
6. Billing System, System Billing untuk pelanggan.
Untuk jaringan Rt-Rw net yang cukup besar dengan jarak yang jauh, user yang banyak, dan menggunakan beberapa repeater kami bisa mengitegrasikan system yang termanagement, hanya dari sebuah user-manager saja sehingga sangat mudah untuk memanagenya.
Jaringan Wifi maupun Rt-Rw net yang telah kami bangun saat ini mampu hingga jangkauan 70 km tanpa repeater, aplikasi point to multi point sedangkan untuk aplikasi point to point hingga jangkauan 100 km denga syarat LOS tanpa penghalang gunung diantaranya.
III. JASA INSTALASI HOTSPOT
Kami melayani jasa instalasi Hotspot baik untuk dinas, hotel, kantor, maupun, sekolah yang ada di kota Tarakan dengan system yang telah dilengkapi dengan Firewall, User-manager, Bandwidth management, Proxy, captive Portal, MRTG, dan Billing System. system dan performa yang handal dan mudah untuk memamanagementnya, baik management user, maupun management bandwidth tiap-tiap user.
1. Firewall, packet dan data dan security filter.
2. User Manager, management user.
3. Bandwidth Management, management bandwidth untuk masing-masing user.
4. Proxy, Chache proxy.
5. MRTG, Monitoring bandwidth yang digunakan.
6. Billing System, System Billing untuk pelanggan.
Untuk jaringan hotspot yang cukup besar dengan jarak yang jauh, user yang banyak, dan menggunakan beberapa repeater kami bisa mengitegrasikan system yang termanagement, hanya dari sebuah billing dan user-manager saja sehingga sangat mudah untuk memanagenya.
IV. JASA INSTALASI CCTV CAMERA
Kami melayani jasa instalasi system security CCTV camera system untuk dinas, hotel, kantor, maupun, sekolah, toko baik manual yang diakses via layar TV atau cctv camera system yang bisa diakses dan dimonitor via Jaringan komputer, wireless maupun system yang bisa dikases maupun dimonitor via internet.
Intranet dan Internet
Intranet dan internet pada hakekatnya adalah jaringan komputer pada tingkatan WAN. Gambar di bawah ini mungkin bisa memberi gambaran agak jelas mengenai perbedaan keduanya. Dari gambar terlihat bahwa intranet lebih pada hubungan antar komputer yang bersifat private network, tidak sembarang orang bisa mengaksesnya bahkan bisa jadi tidak terhubung dengan jaringan luar (internet). Intranet biasa digunakan pada perusahaan – perusahaan besar yang membutuhkan keamanan dan privasi yang tinggi, seperti perusahaan–perusahaan bank. Aplikasi–aplikasi yang biasa dijumpai di internet juga bisa diadakan pada intranet asalkan menyediakan server.
Interconnected Network atau yang lebih populer dengan sebutan Internet yang juga merupakan gabungan dari tiga jenis jaringan diatas (LAN, MAN, WAN) adalah sebuah sistem komunikasi global yang menghubungkan komputer-komputer dan jaringan-jaringan komputer di seluruh dunia. Setiap komputer dan jaringan terhubung – secara langsung maupun tidak langsung – ke beberapa jalur utama yang disebut internet backbone dan dibedakan satu dengan yang lainnya menggunakan alamat unik yang biasa disebut dengan alamat IP 32 bit, contoh: 202.155.4.230.
Komputer dan jaringan dengan berbagai platform yang mempunyai perbedaan dan ciri khas masing-masing (Unix, Linux, Windows, Mac, dll) bertukar informasi dengan sebuah protokol standar yang dikenal dengan nama TCP/IP (Transmission Control Protocol/Internet Protocol).
Internet merupakan public network, siapa saja bisa menyambungkan komputernya pada internet asal mengikuti aturan – aturan yang telah ditetapkan bersama. Saat ini jaringan internet telah melingkupi hampir seluruh dunia. Aplikasi yang ditawarkan diantaranya adalah web (HTTP), email (POP & SMTP), chat, FTP, Telnet, dll. Jika sebuah badan usaha / bisnis / institusi mengekspose sebagian dari internal jaringannya ke komunitas di luar, hal ini di sebut ekstranet. Memang biasanya tidak semua isi intranet dikeluarkan ke publik untuk menjadikan intranet menjadi ekstranet.
Misalnya kita sedang membeli software, buku dll dari sebuah e-toko, maka biasanya kita dapat mengakses sebagian dari intranet toko tersebut. Badan usaha / perusahaan dapat memblokir akses ke intranet mereka melalui router dan meletakan firewall. Firewall adalah sebuah perangkat lunak / perangkat keras yang mengatur akses seseorang kedalam intranet. Proteksi dilakukan melalui berbagai parameter jaringan apakah itu IP address,
nomor port dll. Jika firewall di aktifkan maka akses dapat dikontrol sehingga kita hanya dapat mengakses sebagian saja dari Intranet perusahaan tersebut yang kemudian dikenal sebagai extranet.
———————————————————
Kami melayani Jasa Instalasi Jaringan Wireless (Wifi), Rt-Rw Net dan system security CCTV kamera baik untuk dinas, kantor, sekolah maupun pribadi khusus untuk wilayah di kota Tarakan.
I. JASA INSTALASI JARINGAN WIRELESS (WIFI)
Kami melayani jasa instalasi jaringan wireless (wifi) untuk dinas, kantor, perusahaan, maupun sekolah yang ada di kota Tarakan yang bisa menghubungkan antar komputer menjadi sebuah network, baik untuk aplikasi data, voice, tele conference, video conference, VOIP maupun aplikasi security cctv camera system.
Jaringan Wifi yang telah kami bangun saat ini mampu hingga jangkauan 70 km, aplikasi point to multi point sedangkan untuk aplikasi point to point hingga jangkauan 100 km denga syarat LOS tanpa penghalang gunung diantaranya.
II. JASA INSTALASI RT-RW NET
Kami melayani jasa instalasi Rt-Rw Net yang telah dilengkapi dengan Firewall, User-manager, Bandwidth management, Proxy, captive Portal, MRTG, dan Billing System. system dan performa yang handal dan mudah untuk memanagementnya, baik management user, maupun management bandwidth tiap-tiap user.
1. Firewall, packet dan data dan security filter.
2. User Manager, management user.
3. Bandwidth Management, management bandwidth untuk masing-masing user.
4. Proxy, Chache proxy.
5. MRTG, Monitoring bandwidth yang digunakan.
6. Billing System, System Billing untuk pelanggan.
Untuk jaringan Rt-Rw net yang cukup besar dengan jarak yang jauh, user yang banyak, dan menggunakan beberapa repeater kami bisa mengitegrasikan system yang termanagement, hanya dari sebuah user-manager saja sehingga sangat mudah untuk memanagenya.
Jaringan Wifi maupun Rt-Rw net yang telah kami bangun saat ini mampu hingga jangkauan 70 km tanpa repeater, aplikasi point to multi point sedangkan untuk aplikasi point to point hingga jangkauan 100 km denga syarat LOS tanpa penghalang gunung diantaranya.
III. JASA INSTALASI HOTSPOT
Kami melayani jasa instalasi Hotspot baik untuk dinas, hotel, kantor, maupun, sekolah yang ada di kota Tarakan dengan system yang telah dilengkapi dengan Firewall, User-manager, Bandwidth management, Proxy, captive Portal, MRTG, dan Billing System. system dan performa yang handal dan mudah untuk memamanagementnya, baik management user, maupun management bandwidth tiap-tiap user.
1. Firewall, packet dan data dan security filter.
2. User Manager, management user.
3. Bandwidth Management, management bandwidth untuk masing-masing user.
4. Proxy, Chache proxy.
5. MRTG, Monitoring bandwidth yang digunakan.
6. Billing System, System Billing untuk pelanggan.
Untuk jaringan hotspot yang cukup besar dengan jarak yang jauh, user yang banyak, dan menggunakan beberapa repeater kami bisa mengitegrasikan system yang termanagement, hanya dari sebuah billing dan user-manager saja sehingga sangat mudah untuk memanagenya.
IV. JASA INSTALASI CCTV CAMERA
Kami melayani jasa instalasi system security CCTV camera system untuk dinas, hotel, kantor, maupun, sekolah, toko baik manual yang diakses via layar TV atau cctv camera system yang bisa diakses dan dimonitor via Jaringan komputer, wireless maupun system yang bisa dikases maupun dimonitor via internet.
PEER TO PEER
Peer to peer
P2P merupakan singkatan dari Peer-to-Peer (bahasa Inggris) atau teknologi dari “ujung” ke “ujung” pertama kali di luncurkan dan dipopulerkan oleh aplikasi-aplikasi “berbagi-berkas” (file sharing) seperti Napster dan KaZaA. Pada konteks ini teknologi P2P memungkinkan para pengguna untuk berbagi, mencari dan mengunduh berkas.
Sistem P2P yang sebenarnya adalah suatu sistem yang tidak hanya menghubungkan “ujung” satu dengan lainnya, namun ujung-ujung ini saling berhubungan secara dinamis dan berpartisipasi dalam mengarahkan lalu lintas komunikasi informasi-, pemrosesan-, dan penugasan pembagian bandwidth yang intensif, dimana bila sistem ini tidak ada, tugas-tugas ini biasanya diemban oleh server pusat.
Aplikasi P2P yang sebenarnya memerlukan satuan tim-tim kecil dengan ide cemerlang untuk mengembangkan perangkat lunak dan bisnis-bisnis yang mungkin dilakukan oleh perangkat tersebut – dan mungkin saja bisa membuat perusahaan besar yang sudah ada gulung tikar. P2P yang sebenarnya, bila diaplikasikan pada pasar yang sudah matang dan stabil adalah teknologi yang "mengganggu".
Ide mengenai konsep ini muncul kira-kira pada akhir dekade 1980-an, ketika jaringan komputer dan tentunya juga komputer telah mulai masuk ke dalam salah satu barang wajib dalam perusahaan, baik itu perusahaan kecil maupun besar. Tetapi, arsitektur ini berkembang dalam jaringan yang terlalu kecil untuk memiliki sebuah server yang terdedikasi, sehingga setiap komputer klien pun menyediakan layanan untuk berbagi data untuk melakukan kolaborasi antara pengguna.
Jaringan peer-to-peer pun mulai banyak digemari ketika Microsoft merilis sistem operasi Windows for Workgroups, meski sebelumnya sistem operasi MS-DOS (atau IBM PC-DOS) dengan perangkat MS-NET (atau PC-NET) juga dapat digunakan untuk tujuan ini. Karakteristik kunci jaringan tersebut adalah dalam jaringan ini tidak terdapat sebuah server pusat yang mengatur klien-klien, karena memang setiap komputer bertindak sebagai server untuk komputer klien lainnya. Sistem keamanan yang ditawarkan oleh metode ini terbilang lebih rendah dibandingkan dengan metode klien/server dan manajemen terhadapnya pun menjadi relatif lebih rumit.
Konsep ini pun kemudian berevolusi pada beberapa tahun terakhir, khususnya ketika jaringan Internet menjadi jaringan yang sangat besar. Hal ini mulai muncul kira-kira pada akhir dekade 1990-an, di saat banyak pengguna Internet mengunduh banyak berkas musik mp3 dengan menggunakan metode peer-to-peer dengan menggunakan program Napster yang menuai kritik pedas dari industri musik, seperti halnya Metallica dan banyak lainnya. Napster, pada saat dituntut oleh para pekerja industri musik, dikatakan memiliki anggota lebih dari 20 juta pengguna di seluruh dunia. Selanjutnya beberapa aplikasi juga dibuat dengan menggunakan konsep ini: eDonkey, Kazaa, BitTorrent, dan masih banyak lainnya. Meski banyak aplikasi peer-to-peer ini digunakan oleh pengguna rumahan, ternyata sistem ini juga diminati oleh banyak perusahaan juga.
Keuntungan
Desentralisasi jaringan P2P memiliki keuntungan yang lebih dibandingkan dengan jaringan klien-server tradisional. Jaringan P2P menyeimbangkan diri secara terus menerus tanpa menambah waktu pencarian alamat panggilan dan tanpa harus menggunakan suatu sumber-sumber terpusat. Mereka memanfaatkan mesin –mesin perangkat yang digunakan pengguna-akhir (end users) karena sumber-sumber ini selalu berjalan ke arah proporsi tujuan jaringan. Setiap penambahan ujung baru pada jaringan menambah potensi lebih pemrosesan yang lebih kuat dan bandwith yang lebih besar untuk jaringan tersebut. Ditambah lagi, karena sumber-sumbernya terdesentralisasi, generasi kedua (2G) dari jaringan P2P telah berhasil secara virtual mengeliminasi seluruh biaya yang berhubungan dengan infrastruktur terpusat yang besar.
Kesulitan
Pada penerapan teknologi telephony P2P dimana Telephony berbasis internet –VoIP (Voice over IP : suara melalui protokol internet) telah ada selama bertahun-tahun namun tidak pernah menyentuh pasar besar karena: • Kualitas yang buruk dari produk-produk yang jelas-jelas menguntungkan dari segi biaya (jauh lebih hemat) dibandingkan dari penggunaan telepon biasa. • Frekuensi keberhasilan panggilan telpon rendah karena terhalang oleh firewall-firewall dan penggunakan NAT (Network Address Translation) atau pencarian jaringan yang dituju, dimana hal ini menyebabkan 50% komputer-komputer rumah gagal terhubung dengan perangkat lunak VoIP tradisional). • Penggunaan dan pemasangan perangkat lunak ini penuh dijejali oleh berbagai hal dan membutuhkan konfigurasi yang tidak mudah dan sedikit kemampuan teknis. Pemusatan aktivitas dapat menyelesaikan beberapa kesulitan ini dengan mengarahkan panggilan melalui firewall-firewall dan NAT yang ada. Namun, bila ada pemusatan maka biaya untuk menjalankan jaringan menjadi naik mendekati jumlah biaya yang dikenakan jaringan telpon yang sudah ada. Sebagai tambahan, biaya ini bertambah secara proporsional sebanding dengan bertambahnya pengguna. Dampaknya perusahaan-perusahaan yang mengoperasikan jasa ini biasanya mengalokasikan sumberdaya yang sedikit pada servernya untuk satuan pengguna, dimana hal ini secara serius mengurangi kualitas panggilan.
Klien-server atau client-server merupakan sebuah paradigma dalam teknologi informasi yang merujuk kepada cara untuk mendistribusikan aplikasi ke dalam dua pihak: pihak klien dan pihak server.
Dalam model klien/server, sebuah aplikasi dibagi menjadi dua bagian yang terpisah, tapi masih merupakan sebuah kesatuan yakni komponen klien dan komponen server. Komponen klien juga sering disebut sebagai front-end, sementara komponen server disebut sebagai back-end. Komponen klien dari aplikasi tersebut dijalankan dalam sebuah workstation dan menerima masukan data dari pengguna. Komponen klien tersebut akan menyiapkan data yang dimasukkan oleh pengguna dengan menggunakan teknologi pemrosesan tertentu dan mengirimkannya kepada komponen server yang dijalankan di atas mesin server, umumnya dalam bentuk request terhadap beberapa layanan yang dimiliki oleh server. Komponen server akan menerima request dari klien, dan langsung memprosesnya dan mengembalikan hasil pemrosesan tersebut kepada klien. Klien pun menerima informasi hasil pemrosesan data yang dilakukan server dan menampilkannya kepada pengguna, dengan menggunakan aplikasi yang berinteraksi dengan pengguna.
Sebuah contoh dari aplikasi client/server sederhana adalah aplikasi web yang didesain dengan menggunakan Active Server Pages (ASP) atau PHP. Skrip PHP atau ASP akan dijalankan di dalam web server (Apache atau Internet Information Services), sementara skrip yang berjalan di pihak klien akan dijalankan oleh web browser pada komputer klien. Klien-server merupakan penyelesaian masalah pada software yang menggunakan database sehingga setiap komputer tidak perlu diinstall database, dengan metode klien-server database dapat diinstal pada suatu komputer sebagai server dan aplikasinya diinstal pada client.
Kelebihan dan Kekurangan dari client server dan peer to peer
Posted by roelangga on October 7, 2008
Rate This
Jaringan : jaringan (network) adalah kumpulan dua atau lebih sistem komputer yang terhubung. Terdapat banyak jenis jaringan komputer:
a. local-area network (LAN): komputer yang terhubung berada pada tempat yang berdekatan secara gografis (misalkan satu gedung).
b. Metropolitan Area Network (MAN)
Metropolitan Area Network (MAN), pada dasarnya merupakan versi LAN yang berukuran lebih besar dan biasanya menggunakan teknologi yang sama dengan LAN. MAN dapat mencakup kantor-kantor perusahaan yang letaknya berdekatan atau juga sebuah kota dan dapat dimanfaatkan untuk keperluan pribadi (swasta) atau umum. MAN mampu menunjang data dan suara, bahkan dapat berhubungan dengan jaringan televisi kabel.
c. Wide Area Network (WAN)
Wide Area Network (WAN), jangkauannya mencakup daerah geografis yang luas, seringkali mencakup sebuah negara bahkan benua. WAN terdiri dari kumpulan mesin mesin yang bertujuan untuk menjalankan program-program (aplikasi) pemakai.
d. Internet
Sebenarnya terdapat banyak jaringan didunia ini, seringkali menggunakan perangkat keras dan perangkat lunak yang berbeda-beda . Orang yang terhubung ke jaringan sering berharap untuk bisa berkomunikasi dengan orang lain yang terhubung ke jaringan lainnya. Keinginan seperti ini memerlukan hubungan antar jaringan yang seringkali tidak kampatibel dan berbeda. Biasanya untuk melakukan hal ini diperlukan sebuah mesin yang disebut gateway guna melakukan hubungan dan melaksanakan terjemahan yang diperlukan, baik perangkat keras maupun perangkat lunaknya. Kumpulan jaringan yang terinterkoneksi inilah yang disebut dengan internet.
e. Jaringan Tanpa Kabel
Jaringan tanpa kabel merupakan suatu solusi terhadap komukasi yang tidak bisa dilakukan dengan jaringan yang menggunakan kabel. Misalnya orang yang ingin mendapat informasi atau melakukan komunikasi walaupun sedang berada diatas mobil atau pesawat terbang, maka mutlak jaringan tanpa kabel diperlukan karena koneksi kabel tidaklah mungkin dibuat di dalam mobil atau pesawat. Saat ini jaringan tanpa kabel sudah marak digunakan dengan memanfaatkan jasa satelit dan mampu memberikan kecepatan akses yang lebih cepat dibandingkan dengan jaringan yang menggunakan kabel.yang berjauhan dan dihubungkan dengan line telepon atau gelombang radio.
selain itu, jaringan komputer dapat juga dikelompokan berdasar kriteria di bawah ini:
a. topologi: pengaturan keterhubungan antar sistem komputer. Terdapat bermacam-macam topologi seperti bus, star, dan ring.
b. protokol: protokol mendefinisikan sekelompok aturan dan sinyal yang digunakan oleh komputer pada jaringan untuk berkomunikasi. Protokol LAN yang paling populer adalah Ethernet. Protokol LAN lain yang banyak digunakan adalah IBM token-ring network.
c. arsitektur: jaringan dapat diklasifikasikan ke dalam arsitektur peer-to-peer atau client/server.
KELEBIHAN, KEKURANGAN DARI CLIENT SERVER DAN PEER TO PEER
A. Jaringan client server
Dalam jaringan ini satu komputer berfungsi sebagai pusat pelayanan (server) dan komputer yang lain berfungsi meminta pelayanan ( client ). Sesuai dengan namanya, client server berarti adanya pembagian kerja pengelolaan data antara client dan server. Saat ini, sebagian besar jaringan menggunakan model client/server.
B. Jaringan Peer to Peer
Dalam jaringan ini tidak ada komputer yang berfungsi khusus, dan semua komputer dapat berfungsi sebagai client dan server dalam satu saat bersamaan. Pengguna masing-masing komputer bertanggung jawab terhadap administrasi resource komputer ( dengan membuat nama user, membuat share, menandai ijin mengakses share tersebut). Tiap-tiap user bertanggung jawab juga mengenal pembackupan data pada komputer. Sayangnya penempatan resource dapat menjadi sulit pada network peer to peer yang mempunyai lebih banyak komputer
Kelebihan peer to peer Kelebihan client server
Pelaksanaan tidak terlalu mahal Memberikan keamanan yang lebih baik
Tidak membutuhkan software server NOS ( Network Operating System ) Lebih mudah pengaturannya bila networknya besar karena administrasinya disentralkan
Tidak membutuhkan administrator network yang handal Semua data dapat dibackup pada satu lokasi sentral
Kerugian Kerugian
Tidak cocok untuk network skala besar, administrasi menjadi tidak terkontrol Membutuhkan software NOS yang mahal contoh : NT atau server Windows 2000, XP,Novell, UNIX
Tiap user harus dilatih untuk menjalankan tugas administrative Membutuhkan hardware yang lebih tinggi dan mahal untuk mesin server
Keamanan kurang Membutuhkan administrator yang profesional
Semua mesin yang sharing resource tidak mempengaruhi performa Mempunyai satu titik lemah jika menggunakan satu server, data user menjadi tak ada jika server mati.
P2P merupakan singkatan dari Peer-to-Peer (bahasa Inggris) atau teknologi dari “ujung” ke “ujung” pertama kali di luncurkan dan dipopulerkan oleh aplikasi-aplikasi “berbagi-berkas” (file sharing) seperti Napster dan KaZaA. Pada konteks ini teknologi P2P memungkinkan para pengguna untuk berbagi, mencari dan mengunduh berkas.
Sistem P2P yang sebenarnya adalah suatu sistem yang tidak hanya menghubungkan “ujung” satu dengan lainnya, namun ujung-ujung ini saling berhubungan secara dinamis dan berpartisipasi dalam mengarahkan lalu lintas komunikasi informasi-, pemrosesan-, dan penugasan pembagian bandwidth yang intensif, dimana bila sistem ini tidak ada, tugas-tugas ini biasanya diemban oleh server pusat.
Aplikasi P2P yang sebenarnya memerlukan satuan tim-tim kecil dengan ide cemerlang untuk mengembangkan perangkat lunak dan bisnis-bisnis yang mungkin dilakukan oleh perangkat tersebut – dan mungkin saja bisa membuat perusahaan besar yang sudah ada gulung tikar. P2P yang sebenarnya, bila diaplikasikan pada pasar yang sudah matang dan stabil adalah teknologi yang "mengganggu".
Ide mengenai konsep ini muncul kira-kira pada akhir dekade 1980-an, ketika jaringan komputer dan tentunya juga komputer telah mulai masuk ke dalam salah satu barang wajib dalam perusahaan, baik itu perusahaan kecil maupun besar. Tetapi, arsitektur ini berkembang dalam jaringan yang terlalu kecil untuk memiliki sebuah server yang terdedikasi, sehingga setiap komputer klien pun menyediakan layanan untuk berbagi data untuk melakukan kolaborasi antara pengguna.
Jaringan peer-to-peer pun mulai banyak digemari ketika Microsoft merilis sistem operasi Windows for Workgroups, meski sebelumnya sistem operasi MS-DOS (atau IBM PC-DOS) dengan perangkat MS-NET (atau PC-NET) juga dapat digunakan untuk tujuan ini. Karakteristik kunci jaringan tersebut adalah dalam jaringan ini tidak terdapat sebuah server pusat yang mengatur klien-klien, karena memang setiap komputer bertindak sebagai server untuk komputer klien lainnya. Sistem keamanan yang ditawarkan oleh metode ini terbilang lebih rendah dibandingkan dengan metode klien/server dan manajemen terhadapnya pun menjadi relatif lebih rumit.
Konsep ini pun kemudian berevolusi pada beberapa tahun terakhir, khususnya ketika jaringan Internet menjadi jaringan yang sangat besar. Hal ini mulai muncul kira-kira pada akhir dekade 1990-an, di saat banyak pengguna Internet mengunduh banyak berkas musik mp3 dengan menggunakan metode peer-to-peer dengan menggunakan program Napster yang menuai kritik pedas dari industri musik, seperti halnya Metallica dan banyak lainnya. Napster, pada saat dituntut oleh para pekerja industri musik, dikatakan memiliki anggota lebih dari 20 juta pengguna di seluruh dunia. Selanjutnya beberapa aplikasi juga dibuat dengan menggunakan konsep ini: eDonkey, Kazaa, BitTorrent, dan masih banyak lainnya. Meski banyak aplikasi peer-to-peer ini digunakan oleh pengguna rumahan, ternyata sistem ini juga diminati oleh banyak perusahaan juga.
Keuntungan
Desentralisasi jaringan P2P memiliki keuntungan yang lebih dibandingkan dengan jaringan klien-server tradisional. Jaringan P2P menyeimbangkan diri secara terus menerus tanpa menambah waktu pencarian alamat panggilan dan tanpa harus menggunakan suatu sumber-sumber terpusat. Mereka memanfaatkan mesin –mesin perangkat yang digunakan pengguna-akhir (end users) karena sumber-sumber ini selalu berjalan ke arah proporsi tujuan jaringan. Setiap penambahan ujung baru pada jaringan menambah potensi lebih pemrosesan yang lebih kuat dan bandwith yang lebih besar untuk jaringan tersebut. Ditambah lagi, karena sumber-sumbernya terdesentralisasi, generasi kedua (2G) dari jaringan P2P telah berhasil secara virtual mengeliminasi seluruh biaya yang berhubungan dengan infrastruktur terpusat yang besar.
Kesulitan
Pada penerapan teknologi telephony P2P dimana Telephony berbasis internet –VoIP (Voice over IP : suara melalui protokol internet) telah ada selama bertahun-tahun namun tidak pernah menyentuh pasar besar karena: • Kualitas yang buruk dari produk-produk yang jelas-jelas menguntungkan dari segi biaya (jauh lebih hemat) dibandingkan dari penggunaan telepon biasa. • Frekuensi keberhasilan panggilan telpon rendah karena terhalang oleh firewall-firewall dan penggunakan NAT (Network Address Translation) atau pencarian jaringan yang dituju, dimana hal ini menyebabkan 50% komputer-komputer rumah gagal terhubung dengan perangkat lunak VoIP tradisional). • Penggunaan dan pemasangan perangkat lunak ini penuh dijejali oleh berbagai hal dan membutuhkan konfigurasi yang tidak mudah dan sedikit kemampuan teknis. Pemusatan aktivitas dapat menyelesaikan beberapa kesulitan ini dengan mengarahkan panggilan melalui firewall-firewall dan NAT yang ada. Namun, bila ada pemusatan maka biaya untuk menjalankan jaringan menjadi naik mendekati jumlah biaya yang dikenakan jaringan telpon yang sudah ada. Sebagai tambahan, biaya ini bertambah secara proporsional sebanding dengan bertambahnya pengguna. Dampaknya perusahaan-perusahaan yang mengoperasikan jasa ini biasanya mengalokasikan sumberdaya yang sedikit pada servernya untuk satuan pengguna, dimana hal ini secara serius mengurangi kualitas panggilan.
Klien-server atau client-server merupakan sebuah paradigma dalam teknologi informasi yang merujuk kepada cara untuk mendistribusikan aplikasi ke dalam dua pihak: pihak klien dan pihak server.
Dalam model klien/server, sebuah aplikasi dibagi menjadi dua bagian yang terpisah, tapi masih merupakan sebuah kesatuan yakni komponen klien dan komponen server. Komponen klien juga sering disebut sebagai front-end, sementara komponen server disebut sebagai back-end. Komponen klien dari aplikasi tersebut dijalankan dalam sebuah workstation dan menerima masukan data dari pengguna. Komponen klien tersebut akan menyiapkan data yang dimasukkan oleh pengguna dengan menggunakan teknologi pemrosesan tertentu dan mengirimkannya kepada komponen server yang dijalankan di atas mesin server, umumnya dalam bentuk request terhadap beberapa layanan yang dimiliki oleh server. Komponen server akan menerima request dari klien, dan langsung memprosesnya dan mengembalikan hasil pemrosesan tersebut kepada klien. Klien pun menerima informasi hasil pemrosesan data yang dilakukan server dan menampilkannya kepada pengguna, dengan menggunakan aplikasi yang berinteraksi dengan pengguna.
Sebuah contoh dari aplikasi client/server sederhana adalah aplikasi web yang didesain dengan menggunakan Active Server Pages (ASP) atau PHP. Skrip PHP atau ASP akan dijalankan di dalam web server (Apache atau Internet Information Services), sementara skrip yang berjalan di pihak klien akan dijalankan oleh web browser pada komputer klien. Klien-server merupakan penyelesaian masalah pada software yang menggunakan database sehingga setiap komputer tidak perlu diinstall database, dengan metode klien-server database dapat diinstal pada suatu komputer sebagai server dan aplikasinya diinstal pada client.
Kelebihan dan Kekurangan dari client server dan peer to peer
Posted by roelangga on October 7, 2008
Rate This
Jaringan : jaringan (network) adalah kumpulan dua atau lebih sistem komputer yang terhubung. Terdapat banyak jenis jaringan komputer:
a. local-area network (LAN): komputer yang terhubung berada pada tempat yang berdekatan secara gografis (misalkan satu gedung).
b. Metropolitan Area Network (MAN)
Metropolitan Area Network (MAN), pada dasarnya merupakan versi LAN yang berukuran lebih besar dan biasanya menggunakan teknologi yang sama dengan LAN. MAN dapat mencakup kantor-kantor perusahaan yang letaknya berdekatan atau juga sebuah kota dan dapat dimanfaatkan untuk keperluan pribadi (swasta) atau umum. MAN mampu menunjang data dan suara, bahkan dapat berhubungan dengan jaringan televisi kabel.
c. Wide Area Network (WAN)
Wide Area Network (WAN), jangkauannya mencakup daerah geografis yang luas, seringkali mencakup sebuah negara bahkan benua. WAN terdiri dari kumpulan mesin mesin yang bertujuan untuk menjalankan program-program (aplikasi) pemakai.
d. Internet
Sebenarnya terdapat banyak jaringan didunia ini, seringkali menggunakan perangkat keras dan perangkat lunak yang berbeda-beda . Orang yang terhubung ke jaringan sering berharap untuk bisa berkomunikasi dengan orang lain yang terhubung ke jaringan lainnya. Keinginan seperti ini memerlukan hubungan antar jaringan yang seringkali tidak kampatibel dan berbeda. Biasanya untuk melakukan hal ini diperlukan sebuah mesin yang disebut gateway guna melakukan hubungan dan melaksanakan terjemahan yang diperlukan, baik perangkat keras maupun perangkat lunaknya. Kumpulan jaringan yang terinterkoneksi inilah yang disebut dengan internet.
e. Jaringan Tanpa Kabel
Jaringan tanpa kabel merupakan suatu solusi terhadap komukasi yang tidak bisa dilakukan dengan jaringan yang menggunakan kabel. Misalnya orang yang ingin mendapat informasi atau melakukan komunikasi walaupun sedang berada diatas mobil atau pesawat terbang, maka mutlak jaringan tanpa kabel diperlukan karena koneksi kabel tidaklah mungkin dibuat di dalam mobil atau pesawat. Saat ini jaringan tanpa kabel sudah marak digunakan dengan memanfaatkan jasa satelit dan mampu memberikan kecepatan akses yang lebih cepat dibandingkan dengan jaringan yang menggunakan kabel.yang berjauhan dan dihubungkan dengan line telepon atau gelombang radio.
selain itu, jaringan komputer dapat juga dikelompokan berdasar kriteria di bawah ini:
a. topologi: pengaturan keterhubungan antar sistem komputer. Terdapat bermacam-macam topologi seperti bus, star, dan ring.
b. protokol: protokol mendefinisikan sekelompok aturan dan sinyal yang digunakan oleh komputer pada jaringan untuk berkomunikasi. Protokol LAN yang paling populer adalah Ethernet. Protokol LAN lain yang banyak digunakan adalah IBM token-ring network.
c. arsitektur: jaringan dapat diklasifikasikan ke dalam arsitektur peer-to-peer atau client/server.
KELEBIHAN, KEKURANGAN DARI CLIENT SERVER DAN PEER TO PEER
A. Jaringan client server
Dalam jaringan ini satu komputer berfungsi sebagai pusat pelayanan (server) dan komputer yang lain berfungsi meminta pelayanan ( client ). Sesuai dengan namanya, client server berarti adanya pembagian kerja pengelolaan data antara client dan server. Saat ini, sebagian besar jaringan menggunakan model client/server.
B. Jaringan Peer to Peer
Dalam jaringan ini tidak ada komputer yang berfungsi khusus, dan semua komputer dapat berfungsi sebagai client dan server dalam satu saat bersamaan. Pengguna masing-masing komputer bertanggung jawab terhadap administrasi resource komputer ( dengan membuat nama user, membuat share, menandai ijin mengakses share tersebut). Tiap-tiap user bertanggung jawab juga mengenal pembackupan data pada komputer. Sayangnya penempatan resource dapat menjadi sulit pada network peer to peer yang mempunyai lebih banyak komputer
Kelebihan peer to peer Kelebihan client server
Pelaksanaan tidak terlalu mahal Memberikan keamanan yang lebih baik
Tidak membutuhkan software server NOS ( Network Operating System ) Lebih mudah pengaturannya bila networknya besar karena administrasinya disentralkan
Tidak membutuhkan administrator network yang handal Semua data dapat dibackup pada satu lokasi sentral
Kerugian Kerugian
Tidak cocok untuk network skala besar, administrasi menjadi tidak terkontrol Membutuhkan software NOS yang mahal contoh : NT atau server Windows 2000, XP,Novell, UNIX
Tiap user harus dilatih untuk menjalankan tugas administrative Membutuhkan hardware yang lebih tinggi dan mahal untuk mesin server
Keamanan kurang Membutuhkan administrator yang profesional
Semua mesin yang sharing resource tidak mempengaruhi performa Mempunyai satu titik lemah jika menggunakan satu server, data user menjadi tak ada jika server mati.
Langganan:
Postingan (Atom)